代码优化之整型除以2的指数并四舍五入
引子
前几天QQ群里一位好友提出来一个问题: “整型(有正有负)除以2的指数结果四舍五入, 应该如何优化呢”, 当时做了答, 发表在这里, 希望对大家有用.
符号约记
下取整函数的定义: \(\left\lfloor x \right\rfloor = \max \left\{ {z \in \mathbb{Z}:z \leqslant x} \right\}\)
上取整函数的定义: \(\left\lceil x \right\rceil = \min \left\{ {z \in \mathbb{Z}:z \geqslant x} \right\}\)
四舍五入取整函数的定义: \(\left[\kern-0.15em\left[ x \right]\kern-0.15em\right] = \left\{ {\begin{array}{*{20}{c}} {\left\lfloor {x + 0.5} \right\rfloor }&{x > 0} \\ {\left\lceil {x – 0.5} \right\rceil }&{x \leqslant 0} \end{array}} \right.\)
正文
问题: 整型(有正有负)除以2的指数结果四舍五入, 应该如何优化呢?
问题转化为: 将 \(\left[\kern-0.15em\left[ {\frac{m}{2^k}} \right]\kern-0.15em\right]\) 转化为向下取整的形式,其中 \(m\) 为整数, \(k\) 为非负整数.
答: 因为 \(\left[\kern-0.15em\left[ {\frac{m}{n}} \right]\kern-0.15em\right] = \left\{ {\begin{array}{*{20}{c}} {\left\lfloor {\frac{m}{n} + \frac{1}{2}} \right\rfloor = \left\lfloor {\frac{1}{n}\left( {m + \left\lfloor {\frac{n}{2}} \right\rfloor } \right)} \right\rfloor }&{mn \geqslant 0} \\ {\left\lceil {\frac{m}{n} – \frac{1}{2}} \right\rceil = \left\lceil {\frac{1}{n}\left( {m – \left\lfloor {\frac{n}{2}} \right\rfloor } \right)} \right\rceil }&{mn < 0} \end{array}} \right.\) , 其中 \(m, n\) 均为整数, \(n \neq 0\) .
特别地, 设 \(n = 2^k\) ( \(k\) 为非负整数) 时, 当 \(k=0\) 时, \(\left[\kern-0.15em\left[ m \right]\kern-0.15em\right] = m\) ;
当
\(k>0\)
时,
\(\left[\kern-0.15em\left[ {\frac{m}{{{2^k}}}} \right]\kern-0.15em\right] = \left\{ {\begin{array}{*{20}{c}} {\left\lfloor {\frac{m}{{{2^k}}} + \frac{1}{2}} \right\rfloor = \left\lfloor {\frac{1}{{{2^k}}}\left( {m + \left\lfloor {\frac{{{2^k}}}{2}} \right\rfloor } \right)} \right\rfloor = \left\lfloor {\frac{{m + {2^{k – 1}}}}{{{2^k}}}} \right\rfloor }&{m \geqslant 0} \\ {\left\lceil {\frac{m}{{{2^k}}} – \frac{1}{2}} \right\rceil = \left\lceil {\frac{1}{{{2^k}}}\left( {m – \left\lfloor {\frac{{{2^k}}}{2}} \right\rfloor } \right)} \right\rceil = \left\lceil {\frac{{m – {2^{k – 1}}}}{{{2^k}}}} \right\rceil }&{m < 0} \end{array}} \right.\)
.
又因为 \(\left\lceil {\frac{m}{n}} \right\rceil = \left\{ {\begin{array}{*{20}{c}} {\left\lfloor {\frac{{m + n – 1}}{n}} \right\rfloor = \left\lfloor {\frac{{m – 1}}{n}} \right\rfloor + 1}&{n > 0} \\ {\left\lfloor {\frac{{m + n + 1}}{n}} \right\rfloor = \left\lfloor {\frac{{m + 1}}{n}} \right\rfloor + 1}&{n < 0} \end{array}} \right.\) ,
所以 \(\left\lceil {\frac{{m – {2^{k – 1}}}}{{{2^k}}}} \right\rceil = \left\lfloor {\frac{{m – {2^{k – 1}} + {2^k} – 1}}{{{2^k}}}} \right\rfloor = \left\lfloor {\frac{{m + {2^{k – 1}} – 1}}{{{2^k}}}} \right\rfloor\) .
综上, \(\left[\kern-0.15em\left[ {\frac{m}{{{2^k}}}} \right]\kern-0.15em\right] = \left\{ {\begin{array}{*{20}{c}} m&{k = 0} \\ {\left\lfloor {\frac{{m + {2^{k – 1}}}}{{{2^k}}}} \right\rfloor }&{k > 0,m \geqslant 0} \\ {\left\lfloor {\frac{{m + {2^{k – 1}} – 1}}{{{2^k}}}} \right\rfloor }&{k > 0,m < 0} \end{array}} \right.\) .
上式可以很方便地转写为只包含加减和位运算的C/C++代码.
const int INT_BITS = 32; int div_exp2(int x, unsigned char k) { if (k == 0) return x; int tail = x >> (INT_BITS - 1); return (x + (1 <> k; }
测试代码
#include #include #include int div_exp2_plain(int x, unsigned char k) { int den = 1 < 0) { return int(float(x) / den + 0.5); } else { return int(float(x) / den - 0.5); } } const int INT_BITS = 32; int div_exp2(int x, unsigned char k) { if (k == 0) return x; int tail = x >> (INT_BITS - 1); return (x + (1 <> k; } int random(int lower, int upper) { if (lower > upper) { int temp = lower; lower = upper; upper = temp; } return rand() % (upper - lower + 1) + lower; } int main() { int k = 5; printf("=========================\n"); for (int i = 0; i < 10000; ++i) { int x = random(-1111, 11111); int val1 = div_exp2_plain(x, k); int val2 = div_exp2(x, k); if (val1 != val2) { float val = float(x) / (1 << k); printf("%d / 2^%d: %.2f, %d, %d\n", x, k, val, val1, val2); } else { // printf("Pass\n"); } } printf("=========================\n"); return 0; }
版权声明
版权声明:自由分享,保持署名-非商业用途-非衍生,知识共享3.0协议。
如果你对本文有疑问或建议,欢迎发留言!转载请保留版权声明!
如果你觉得本文不错, 也可以用微信赞赏一下哈.