Rust半小时教程
为了熟练的掌握一门编程语言,人们不得不阅读它的大量的相关资料。但是如果你不理解这些资料介绍的内容,如何能学习更多的资料呢?
在本文中,我将尽可能多地列举Rust代码片段,并解释它们包含的关键字和符号的含义,而不是只关注Rust的一两个概念。
准备好了吗,让我们出发吧!
let
引入变量
let x; // declare "x" x = 42; // assign 42 to "x"
也可以写成一行:
let x = 42;
你可以使用 :
显式地指定变量的类型,也就是类型注解:
let x: i32; // `i32` is a signed 32-bit integer x = 42; // there's i8, i16, i32, i64, i128 // also u8, u16, u32, u64, u128 for unsigned
也可以写成一行:
let x: i32 = 42;
如果你声明一个变量,后来再初始化它。在初始化之前使用它的话编译器会报错:
let x; foobar(x); // error: borrow of possibly-uninitialized variable: `x` x = 42;
下面的代码就可以了:
let x; x = 42; foobar(x); // the type of `x` will be inferred from here
下划线 _
是一个特殊的名字,或者更确切地说,“缺乏名字”。基本上它的意思就是扔掉一些东西:
// this does *nothing* because 42 is a constant let _ = 42; // this calls `get_thing` but throws away its result let _ = get_thing();
以下划线开头的名称是常规名称,有一点特殊,就是如果它们未被使用的话编译器不会报警告:
// we may use `_x` eventually, but our code is a work-in-progress // and we just wanted to get rid of a compiler warning for now. let _x = 42;
变量名可以重用-它会隐藏(shadow)前一个变量:
let x = 13; let x = x + 3; // using `x` after that line only refers to the second `x`, // the first `x` no longer exists.
Rust有 tuple类型
,你可以把它看作有固定长度的不同类型的集合:
let pair = ('a', 17); pair.0; // this is 'a' pair.1; // this is 17
如果我们想为tuple加上类型注解,可以这么做:
let pair: (char, i32) = ('a', 17);
Tuple类型可以通过赋值方式进行解构(destructured),这意味着它们被分成各自独立的字段:
let (some_char, some_int) = ('a', 17); // now, `some_char` is 'a', and `some_int` is 17
当一个函数返回tuple类型的时候特别管用:
let (left, right) = slice.split_at(middle);
当然,解构一个tuple的时候,下划线 _
可以用来丢掉一些字段:
let (_, right) = slice.split_at(middle);
分号 ;
放在语句(statement)的结尾:
let x = 3; let y = 5; let z = y + x;
这意味着语句可以写成多行:
let x = vec![1, 2, 3, 4, 5, 6, 7, 8] .iter() .map(|x| x + 3) .fold(0, |x, y| x + y);
(之后我们再介绍这段代码的意义)
fn
用来声明一个函数。
下面是一个void函数:
fn greet() { println!("Hi there!"); }
下面是一个返回32位有符号的整数,箭头指示它的返回类型:
fn fair_dice_roll() -> i32 { 4 }
一对大括号声明了代码块(block),块有自己的作用域:
// This prints "in", then "out" fn main() { let x = "out"; { // this is a different `x` let x = "in"; println!(x); } println!(x); }
块也是表达式,意味着它的计算结果是一个值:
// this: let x = 42; // is equivalent to this: let x = { 42 };
块可以包括多条语句:
let x = { let y = 1; // first statement let z = 2; // second statement y + z // this is the *tail* - what the whole block will evaluate to };
函数块的最后省略分号意味着返回这个值,例如下面两个函数功能是一样的:
fn fair_dice_roll() -> i32 { return 4; } fn fair_dice_roll() -> i32 { 4 }
if
条件也可以是表达式:
fn fair_dice_roll() -> i32 { if feeling_lucky { 6 } else { 4 } }
match
也是表达式:
fn fair_dice_roll() -> i32 { match feeling_lucky { true => 6, false => 4, } }
点号( .
)用来访问一个值的字段:
let a = (10, 20); a.0; // this is 10 let amos = get_some_struct(); amos.nickname; // this is "fasterthanlime"
或者调用一个方法:
let nick = "fasterthanlime"; nick.len(); // this is 14
双冒号( ::
)类似点号但是操作的对象是命名空间。
下面的例子中 std
是一个crate(库), cmp
是一个模块( module
, 源文件), min
是一个函数:
let least = std::cmp::min(3, 8); // this is 3
use
指令将其它命名空间的名称引入到当前:
use std::cmp::min; let least = min(7, 1); // this is 1
使用 use
指令的时候,大括号意味着一组名称( glob
)。如果我们想同时引入 max
和 min
,我们可以这么做:
// this works: use std::cmp::min; use std::cmp::max; // this also works: use std::cmp::{min, max}; // this also works! use std::{cmp::min, cmp::max};
通配符 *
引入命名空间下的所有的名称:
// this brings `min` and `max` in scope, and many other things use std::cmp::*;
类型也是命名空间,它们的方法也可以通过普通函数一样调用:
let x = "amos".len(); // this is 4 let x = str::len("amos"); // this is also 4
str
是一个基本类型(primitive type),但是在默认的命名空间下也有很多非基本类型:
// `Vec` is a regular struct, not a primitive type let v = Vec::new(); // this is exactly the same code, but with the *full* path to `Vec` let v = std::vec::Vec::new();
这是因为Rust会在每个模块开始之前插入:
use std::prelude::v1::*;
它重新输出了很多的符号,比如 Vec
、 String
、 Option
和 Result
。
结构体使用 struct
声明:
struct Vec2 { x: f64, // 64-bit floating point, aka "double precision" y: f64, }
可以使用结构体文本初始化它们:
let v1 = Vec2 { x: 1.0, y: 3.0 }; let v2 = Vec2 { y: 2.0, x: 4.0 }; // the order does not matter, only the names do
有一个简洁的方式使用另外一个结构体初始化余下的字段:
let v3 = Vec2 { x: 14.0, ..v2 };
这被称作 struct update syntax
,只能发生在最后的位置,后面没有逗号。
注意”剩余的字段”可以是结构体的所有字段:
let v4 = Vec2 { ..v3 };
结构体,也像tuple类型一样,可以解构。
下面是一个合法的 let
模式:
let (left, right) = slice.split_at(middle);
又比如下面的代码:
let v = Vec2 { x: 3.0, y: 6.0 }; let Vec2 { x, y } = v; // `x` is now 3.0, `y` is now `6.0`
抑或下面的代码:
let Vec2 { x, .. } = v; // this throws away `v.y`
let
模式也可以用在 if
中当条件:
struct Number { odd: bool, value: i32, } fn main() { let one = Number { odd: true, value: 1 }; let two = Number { odd: false, value: 2 }; print_number(one); print_number(two); } fn print_number(n: Number) { if let Number { odd: true, value } = n { println!("Odd number: {}", value); } else if let Number { odd: false, value } = n { println!("Even number: {}", value); } } // this prints: // Odd number: 1 // Even number: 2
match
匹配也是模式,就像 if let
:
fn print_number(n: Number) { match n { Number { odd: true, value } => println!("Odd number: {}", value), Number { odd: false, value } => println!("Even number: {}", value), } } // this prints the same as before
注意 match
匹配必须是详尽的,至少需要一个分支与之匹配:
fn print_number(n: Number) { match n { Number { value: 1, .. } => println!("One"), Number { value: 2, .. } => println!("Two"), Number { value, .. } => println!("{}", value), // if that last arm didn't exist, we would get a compile-time error } }
如果你觉得麻烦,可以使用下划线 _
匹配所有的模式:
fn print_number(n: Number) { match n.value { 1 => println!("One"), 2 => println!("Two"), _ => println!("{}", n.value), } }
你可以为你的类型声明方法:
struct Number { odd: bool, value: i32, } impl Number { fn is_strictly_positive(self) -> bool { self.value > 0 } }
可以正常使用它们:
fn main() { let minus_two = Number { odd: false, value: -2, }; println!("positive? {}", minus_two.is_strictly_positive()); // this prints "positive? false" }
默认变量绑定是不可变的:
fn main() { let n = Number { odd: true, value: 17, }; n.odd = false; // error: cannot assign to `n.odd`, // as `n` is not declared to be mutable }
不可变的变量不能对其变量值进行修改,但是同时也不能通过赋值更改变量:
fn main() { let n = Number { odd: true, value: 17, }; n = Number { odd: false, value: 22, }; // error: cannot assign twice to immutable variable `n` }
mut
允许变量可以更改:
fn main() { let mut n = Number { odd: true, value: 17, } n.value = 19; // all good }
trait
是多个类型拥有的共同的东西:
trait Signed { fn is_strictly_negative(self) -> bool; }
你可以实现:
- 为任意类型实现你自己定义的trait
- 为你的类型实现任意类型的trait
- 不允许为别人的类型实现别人的trait
这被称之为 孤立规则
(orphan rules)。
下面的例子是自定义类型实现自定义trait:
impl Signed for Number { fn is_strictly_negative(self) -> bool { self.value < 0 } } fn main() { let n = Number { odd: false, value: -44 }; println!("{}", n.is_strictly_negative()); // prints "true" }
为外部类型实现自定义trait(甚至是基本类型):
impl Signed for i32 { fn is_strictly_negative(self) -> bool { self < 0 } } fn main() { let n: i32 = -44; println!("{}", n.is_strictly_negative()); // prints "true" }
为自定义类型实现外部trait:
// the `Neg` trait is used to overload `-`, the // unary minus operator. impl std::ops::Neg for Number { type Output = Number; fn neg(self) -> Number { Number { value: -self.value, odd: self.odd, } } } fn main() { let n = Number { odd: true, value: 987 }; let m = -n; // this is only possible because we implemented `Neg` println!("{}", m.value); // prints "-987" }
impl
总是用来为类型实现方法的,所以在这个块中, Self
意味着这个类型:
impl std::ops::Neg for Number { type Output = Self; fn neg(self) -> Self { Self { value: -self.value, odd: self.odd, } } }
有些trait只是一个标记( marker
),它并不是指示类型要实现什么方法,而是说这种类型可以用作做特定的事情。
例如 i32
实现 Copy
trait(简单地讲, i32
是可复制的),所以下面的代码工作正常:
fn main() { let a: i32 = 15; let b = a; // `a` is copied let c = a; // `a` is copied again }
下面的代码也正常:
fn print_i32(x: i32) { println!("x = {}", x); } fn main() { let a: i32 = 15; print_i32(a); // `a` is copied print_i32(a); // `a` is copied again }
但是 Number
类型没有实现 Copy
,所以下面的代码不工作:
fn main() { let n = Number { odd: true, value: 51 }; let m = n; // `n` is moved into `m` let o = n; // error: use of moved value: `n` }
下面的代码也不行:
fn print_number(n: Number) { println!("{} number {}", if n.odd { "odd" } else { "even" }, n.value); } fn main() { let n = Number { odd: true, value: 51 }; print_number(n); // `n` is moved print_number(n); // error: use of moved value: `n` }
但是如果 print_number
使用一个不可变的引用就可以:
fn print_number(n: &Number) { println!("{} number {}", if n.odd { "odd" } else { "even" }, n.value); } fn main() { let n = Number { odd: true, value: 51 }; print_number(&n); // `n` is borrowed for the time of the call print_number(&n); // `n` is borrowed again }
如果变量被声明为可变的,则函数参数使用可变引用也可以工作:
fn invert(n: &mut Number) { n.value = -n.value; } fn print_number(n: &Number) { println!("{} number {}", if n.odd { "odd" } else { "even" }, n.value); } fn main() { // this time, `n` is mutable let mut n = Number { odd: true, value: 51 }; print_number(&n); invert(&mut n); // `n is borrowed mutably - everything is explicit print_number(&n); }
Trait方法中的 self
参数可以使用引用,也可以使用不可变引用。
impl std::clone::Clone for Number { fn clone(&self) -> Self { Self { ..*self } }
当调用trait的方法时, receiver
隐式地被借用:
fn main() { let n = Number { odd: true, value: 51 }; let mut m = n.clone(); m.value += 100; print_number(&n); print_number(&m); }
前面讲到过,它和下面的代码一样:
let m = n.clone(); let m = std::clone::Clone::clone(&n);
像 Copy
这样的Marker trait是没有方法的:
// note: `Copy` requires that `Clone` is implemented too impl std::clone::Clone for Number { fn clone(&self) -> Self { Self { ..*self } } } impl std::marker::Copy for Number {}
现在 Clone
仍然可以使用:
fn main() { let n = Number { odd: true, value: 51 }; let m = n.clone(); let o = n.clone(); }
但是 Number
值不会被 move
了:
fn main() { let n = Number { odd: true, value: 51 }; let m = n; // `m` is a copy of `n` let o = n; // same. `n` is neither moved nor borrowed. }
一些trait太通用了,我们可以通过 derive
属性自动实现它们:
#[derive(Clone, Copy)] struct Number { odd: bool, value: i32, } // this expands to `impl Clone for Number` and `impl Copy for Number` blocks.
函数可以是泛型的:
fn foobar(arg: T) { // do something with `arg` }
它们可以有多个类型参数,类型参数用在函数声明和函数体中,用来替代具体的类型:
fn foobar(left: L, right: R) { // do something with `left` and `right` }
类型参数通常有约束,所以你可以用它做一些额外的事情。
最简单的约束就是trait名称:
fn print(value: T) { println!("value = {}", value); } fn print(value: T) { println!("value = {:?}", value); }
类型约束还可以使用更长的语法:
fn print(value: T) where T: Display, { println!("value = {}", value); }
约束还可以更复杂,比如要求类型要实现多个trait:
use std::fmt::Debug; fn compare(left: T, right: T) where T: Debug + PartialEq, { println!("{:?} {} {:?}", left, if left == right { "==" } else { "!=" }, right); } fn main() { compare("tea", "coffee"); // prints: "tea" != "coffee" }
泛型函数可以被当作一个命名空间,包含无穷多个不同具体类型的函数。
类似 crate
、 module
和类型,泛型函数可以使用 ::
导航:
fn main() { use std::any::type_name; println!("{}", type_name::()); // prints "i32" println!("{}", type_name::()); // prints "(f64, char)" }
这被亲切地称之为 turbofish syntax
,因为 ::
看起来像条鱼。
结构体可以是泛型的:
struct Pair { a: T, b: T, } fn print_type_name(_val: &T) { println!("{}", std::any::type_name::()); } fn main() { let p1 = Pair { a: 3, b: 9 }; let p2 = Pair { a: true, b: false }; print_type_name(&p1); // prints "Pair" print_type_name(&p2); // prints "Pair" }
标准库中的 Vec
(分配在堆上的数组)就是泛型实现的:
fn main() { let mut v1 = Vec::new(); v1.push(1); let mut v2 = Vec::new(); v2.push(false); print_type_name(&v1); // prints "Vec" print_type_name(&v2); // prints "Vec" }
谈到 Vec
,有个宏( macro
)可以通过字面方式声明 Vec
变量:
fn main() { let v1 = vec![1, 2, 3]; let v2 = vec![true, false, true]; print_type_name(&v1); // prints "Vec" print_type_name(&v2); // prints "Vec" }
类似 name!()
、 name![]
、 name!{}
都是调用宏的方式。宏会被展开成正常的代码。
事实上, println
就是一个宏:
fn main() { println!("{}", "Hello there!"); }
它的展开代码和下面的代码功能一样:
fn main() { use std::io::{self, Write}; io::stdout().lock().write_all(b"Hello there!\n").unwrap(); }
panic
也是一个宏,例如 Option
既可以包含某个值,也可以不包含值。如果它不包含值,调用它的 .unwrap()
会panic:
fn main() { let o1: Option = Some(128); o1.unwrap(); // this is fine let o2: Option = None; o2.unwrap(); // this panics! } // output: thread 'main' panicked at 'called `Option::unwrap()` on a `None` value', src/libcore/option.rs:378:21
Option
并不是一个结构体,而是一个枚举类型( enum
),它包含两个值:
enum Option { None, Some(T), } impl Option { fn unwrap(self) -> T { // enums variants can be used in patterns: match self { Self::Some(t) => t, Self::None => panic!(".unwrap() called on a None option"), } } } use self::Option::{None, Some}; fn main() { let o1: Option = Some(128); o1.unwrap(); // this is fine let o2: Option = None; o2.unwrap(); // this panics! } // output: thread 'main' panicked at '.unwrap() called on a None option', src/main.rs:11:27
Result
也是一个枚举类型。它既可以包含一个正常的,也可以包含一个error:
enum Result { Ok(T), Err(E), }
如果包含error,调用它的 .unwrap()
也会panic。
变量绑定有 声明周期
:
fn main() { // `x` doesn't exist yet { let x = 42; // `x` starts existing println!("x = {}", x); // `x` stops existing } // `x` no longer exists }
类似地,引用也有声明周期:
fn main() { // `x` doesn't exist yet { let x = 42; // `x` starts existing let x_ref = &x; // `x_ref` starts existing - it borrows `x` println!("x_ref = {}", x_ref); // `x_ref` stops existing // `x` stops existing } // `x` no longer exists }
引用的声明周期不能超过它借用的变量的声明周期:
fn main() { let x_ref = { let x = 42; &x }; println!("x_ref = {}", x_ref); // error: `x` does not live long enough }
一个变量可以不可变地借用多次:
fn main() { let x = 42; let x_ref1 = &x; let x_ref2 = &x; let x_ref3 = &x; println!("{} {} {}", x_ref1, x_ref2, x_ref3); }
在借用的时候,变量不能被修改:
fn main() { let mut x = 42; let x_ref = &x; x = 13; println!("x_ref = {}", x_ref); // error: cannot assign to `x` because it is borrowed }
当不可变地借用时,不能同时可变地的借用:
fn main() { let mut x = 42; let x_ref1 = &x; let x_ref2 = &mut x; // error: cannot borrow `x` as mutable because it is also borrowed as immutable println!("x_ref1 = {}", x_ref1); }
函数参数中的引用也有生命周期:
fn print(x: &i32) { // `x` is borrowed (from the outside) for the // entire time this function is called. }
函数中的参数被调用时可以同时使用多个的生命周期:
- 所有使用这些引用的函数都是泛型的
- 声明周期也是泛型参数
生命周期的名称以 '
开始:
// elided (non-named) lifetimes: fn print(x: &i32) {} // named lifetimes: fn print(x: &'a i32) {}
返回引用的声明周期依赖参数的声明周期:
struct Number { value: i32, } fn number_value(num: &'a Number) -> &'a i32 { #.value } fn main() { let n = Number { value: 47 }; let v = number_value(&n); // `v` borrows `n` (immutably), thus: `v` cannot outlive `n`. // While `v` exists, `n` cannot be mutably borrowed, mutated, moved, etc. }
当只有一个生命周期时,它并需要被命名,所有对象都有同样的声明周期,所以下面两个函数是等价的:
fn number_value(num: &'a Number) -> &'a i32 { #.value } fn number_value(num: &Number) -> &i32 { #.value }
结构体也可以通过生命周期声明为泛型,这允许它们持有引用:
struct NumRef { x: &'a i32, } fn main() { let x: i32 = 99; let x_ref = NumRef { x: &x }; // `x_ref` cannot outlive `x`, etc. }
同样的代码,增加一个函数:
struct NumRef { x: &'a i32, } fn as_num_ref(x: &'a i32) -> NumRef { NumRef { x: &x } } fn main() { let x: i32 = 99; let x_ref = as_num_ref(&x); // `x_ref` cannot outlive `x`, etc. }
同样的代码,使用省略的( elided
)的生命周期:
struct NumRef { x: &'a i32, } fn as_num_ref(x: &i32) -> NumRef { NumRef { x: &x } } fn main() { let x: i32 = 99; let x_ref = as_num_ref(&x); // `x_ref` cannot outlive `x`, etc. }
impl
块也可以使用声明周期实现泛型:
impl NumRef { fn as_i32_ref(&'a self) -> &'a i32 { self.x } } fn main() { let x: i32 = 99; let x_num_ref = NumRef { x: &x }; let x_i32_ref = x_num_ref.as_i32_ref(); // neither ref cannot outlive `x` }
但是你同样可以使用省略的方式:
impl NumRef { fn as_i32_ref(&self) -> &i32 { self.x } }
如果你不需要使用声明周期的名字,你甚至可以省略更多:
impl NumRef { fn as_i32_ref(&self) -> &i32 { self.x } }
有一个特殊的声明周期,叫做 'static
,它的生命周期在整个程序运行时。
字符串字面值就是 'static
:
struct Person { name: &'static str, } fn main() { let p = Person { name: "fasterthanlime", }; }
但是 owned string
声明周期就不是 'static
的:
struct Person { name: &'static str, } fn main() { let name = format!("fasterthan{}", "lime"); let p = Person { name: &name }; // error: `name` does not live long enough }
上面的例子中 name
并不是 &'static str
类型,而是 Stirng
类型。它是动态分配的,可以被释放。它的生命周期小于整个程序,尽管它是在 main
函数中。
为了在 Person
中存储一个非 'static
的字符串,你需要:
A)通过声明周期声明泛型
struct Person { name: &'a str, } fn main() { let name = format!("fasterthan{}", "lime"); let p = Person { name: &name }; // `p` cannot outlive `name` }
或者
B)获得这个字符串的所有权
struct Person { name: String, } fn main() { let name = format!("fasterthan{}", "lime"); let p = Person { name: name }; // `name` was moved into `p`, their lifetimes are no longer tied. }
在一个结构体的字面值中,如果字段名和变量相同时:
let p = Person { name: name };
可以简写为:
let p = Person { name };
Rust中很多类型都有 owned
和非 owned
变种:
-
字符串:
String
是owned,&str
是引用 -
路径:
PathBuf
是owned,&Path
是引用 -
集合:
Vec
是owned,&[T]
是引用
Rust有slice – 它们是对多个连续元素的引用。
你可以借用vector的slice,例如:
fn main() { let v = vec![1, 2, 3, 4, 5]; let v2 = &v[2..4]; println!("v2 = {:?}", v2); } // output: // v2 = [3, 4]
上面并没有什么魔法。索引操作符( foo[index]
)被 Index
和 IndexMut
trait重载。
..
是range表示方法。 Range是标准库定义的一组结构体。
前后的索引值可以省略,默认右边的值是不包含的, 如果要包含右边的值,使用 =
,:
fn main() { // 0 or greater println!("{:?}", (0..).contains(&100)); // true // strictly less than 20 println!("{:?}", (..20).contains(&20)); // false // 20 or less than 20 println!("{:?}", (..=20).contains(&20)); // true // only 3, 4, 5 println!("{:?}", (3..6).contains(&4)); // true }
借用规则同样应用于slice:
fn tail(s: &[u8]) -> &[u8] { &s[1..] } fn main() { let x = &[1, 2, 3, 4, 5]; let y = tail(x); println!("y = {:?}", y); }
与下面的代码相同:
fn tail(s: &'a [u8]) -> &'a [u8] { &s[1..] }
下面的代码是合法的:
fn main() { let y = { let x = &[1, 2, 3, 4, 5]; tail(x) }; println!("y = {:?}", y); }
只不过是因为 [1, 2, 3, 4, 5]
是 'static
。下面的代码就不合法:
fn main() { let y = { let v = vec![1, 2, 3, 4, 5]; tail(&v) // error: `v` does not live long enough }; println!("y = {:?}", y); }
这是因为 vector
分配在堆上,它有非 'static
的声明周期。
&str
实际上是slice:
fn file_ext(name: &str) -> Option { // this does not create a new string - it returns // a slice of the argument. name.split(".").last() } fn main() { let name = "Read me. Or don't.txt"; if let Some(ext) = file_ext(name) { println!("file extension: {}", ext); } else { println!("no file extension"); } }
借用规则同样适用:
fn main() { let ext = { let name = String::from("Read me. Or don't.txt"); file_ext(&name).unwrap_or("") // error: `name` does not live long enough }; println!("extension: {:?}", ext); }
返回失败的函数典型地返回 Result
:
fn main() { let s = std::str::from_utf8(&[240, 159, 141, 137]); println!("{:?}", s); // prints: Ok(":watermelon:") let s = std::str::from_utf8(&[195, 40]); println!("{:?}", s); // prints: Err(Utf8Error { valid_up_to: 0, error_len: Some(1) }) }
如果处理失败的时候想panic,你可以调用 .unwrap()
:
fn main() { let s = std::str::from_utf8(&[240, 159, 141, 137]).unwrap(); println!("{:?}", s); // prints: ":watermelon:" let s = std::str::from_utf8(&[195, 40]).unwrap(); // prints: thread 'main' panicked at 'called `Result::unwrap()` // on an `Err` value: Utf8Error { valid_up_to: 0, error_len: Some(1) }', // src/libcore/result.rs:1165:5 }
或者调用 .expect()
panic一个定制的信息:
fn main() { let s = std::str::from_utf8(&[195, 40]).expect("valid utf-8"); // prints: thread 'main' panicked at 'valid utf-8: Utf8Error // { valid_up_to: 0, error_len: Some(1) }', src/libcore/result.rs:1165:5 }
抑或使用 match
:
fn main() { match std::str::from_utf8(&[240, 159, 141, 137]) { Ok(s) => println!("{}", s), Err(e) => panic!(e), } // prints :watermelon: }
甚至使用 if let
:
fn main() { if let Ok(s) = std::str::from_utf8(&[240, 159, 141, 137]) { println!("{}", s); } // prints :watermelon: }
再不济给上层抛出错误:
fn main() -> Result { match std::str::from_utf8(&[240, 159, 141, 137]) { Ok(s) => println!("{}", s), Err(e) => return Err(e), } Ok(()) }
常用的简洁方式是使用 ?
:
fn main() -> Result { let s = std::str::from_utf8(&[240, 159, 141, 137])?; println!("{}", s); Ok(()) }
*
符号常用来解引用,但是你不需要专门访问字段或者调用方法:
struct Point { x: f64, y: f64, } fn main() { let p = Point { x: 1.0, y: 3.0 }; let p_ref = &p; println!("({}, {})", p_ref.x, p_ref.y); } // prints `(1, 3)`
如果类型是可复制的(实现 Copy
),那么你可以:
struct Point { x: f64, y: f64, } fn negate(p: Point) -> Point { Point { x: -p.x, y: -p.y, } } fn main() { let p = Point { x: 1.0, y: 3.0 }; let p_ref = &p; negate(*p_ref); // error: cannot move out of `*p_ref` which is behind a shared reference }
// now `Point` is `Copy` #[derive(Clone, Copy)] struct Point { x: f64, y: f64, } fn negate(p: Point) -> Point { Point { x: -p.x, y: -p.y, } } fn main() { let p = Point { x: 1.0, y: 3.0 }; let p_ref = &p; negate(*p_ref); // ...and now this works }
闭包( Closure
)是实现了 Fn
、 FnMut
、 FnOnce
类型的函数。并且带有捕获的上下文。
参数是以逗号分隔的名称列表,在 |
之中。它们不需要大括号,除非你有多行语句:
fn for_each_planet(f: F) where F: Fn(&'static str) { f("Earth"); f("Mars"); f("Jupiter"); } fn main() { for_each_planet(|planet| println!("Hello, {}", planet)); } // prints: // Hello, Earth // Hello, Mars // Hello, Jupiter
借用规则同样适用:
fn for_each_planet(f: F) where F: Fn(&'static str) { f("Earth"); f("Mars"); f("Jupiter"); } fn main() { let greeting = String::from("Good to see you"); for_each_planet(|planet| println!("{}, {}", greeting, planet)); // our closure borrows `greeting`, so it cannot outlive it }
比如下面的代码就不工作:
fn for_each_planet(f: F) where F: Fn(&'static str) + 'static // `F` must now have "'static" lifetime { f("Earth"); f("Mars"); f("Jupiter"); } fn main() { let greeting = String::from("Good to see you"); for_each_planet(|planet| println!("{}, {}", greeting, planet)); // error: closure may outlive the current function, but it borrows // `greeting`, which is owned by the current function }
但是下面的代码就可以:
fn main() { let greeting = String::from("You're doing great"); for_each_planet(move |planet| println!("{}, {}", greeting, planet)); // `greeting` is no longer borrowed, it is *moved* into // the closure. }
FnMut
需要可变地借用去调用,所以它同时只能调用一次。
下面的代码合法:
fn foobar(f: F) where F: Fn(i32) -> i32 { println!("{}", f(f(2))); } fn main() { foobar(|x| x * 2); } // output: 8
下面的代码不合法:
fn foobar(mut f: F) where F: FnMut(i32) -> i32 { println!("{}", f(f(2))); // error: cannot borrow `f` as mutable more than once at a time } fn main() { foobar(|x| x * 2); }
然后下民的代码有合法了:
fn foobar(mut f: F) where F: FnMut(i32) -> i32 { let tmp = f(2); println!("{}", f(tmp)); } fn main() { foobar(|x| x * 2); } // output: 8
之所以有 FnMut
类似,是因为有些闭包会可变地借用本地变量:
fn foobar(mut f: F) where F: FnMut(i32) -> i32 { let tmp = f(2); println!("{}", f(tmp)); } fn main() { let mut acc = 2; foobar(|x| { acc += 1; x * acc }); } // output: 24
这些闭包不能传给期望 Fn
类型的参数:
fn foobar(f: F) where F: Fn(i32) -> i32 { println!("{}", f(f(2))); } fn main() { let mut acc = 2; foobar(|x| { acc += 1; // error: cannot assign to `acc`, as it is a // captured variable in a `Fn` closure. // the compiler suggests "changing foobar // to accept closures that implement `FnMut`" x * acc }); }
FnOnce
闭包只会被调用一次。因为一些闭包会把move进来的变量在返回值中move out:
fn foobar(f: F) where F: FnOnce() -> String { println!("{}", f()); } fn main() { let s = String::from("alright"); foobar(move || s); // `s` was moved into our closure, and our // closures moves it to the caller by returning // it. Remember that `String` is not `Copy`. }
这是自然限制的,因为 FnOnce
闭包在调用的时候需要被move:
fn foobar(f: F) where F: FnOnce() -> String { println!("{}", f()); println!("{}", f()); // error: use of moved value: `f` }
而且你确保使用 move
调用闭包,它依然是非法的:
fn main() { let s = String::from("alright"); foobar(move || s); foobar(move || s); // use of moved value: `s` }
但是下面的代码就是合法的:
fn main() { let s = String::from("alright"); foobar(|| s.clone()); foobar(|| s.clone()); }
下面是有两个参数的闭包:
fn foobar(x: i32, y: i32, is_greater: F) where F: Fn(i32, i32) -> bool { let (greater, smaller) = if is_greater(x, y) { (x, y) } else { (y, x) }; println!("{} is greater than {}", greater, smaller); } fn main() { foobar(32, 64, |x, y| x > y); }
下面是忽略了这两个参数的闭包:
fn main() { foobar(32, 64, |_, _| panic!("Comparing is futile!")); }
下面是一个唱“滴答”的闭包:
fn countdown(count: usize, tick: F) where F: Fn(usize) { for i in (1..=count).rev() { tick(i); } } fn main() { countdown(3, |i| println!("tick {}...", i)); } // output: // tick 3... // tick 2... // tick 1...
下面是一个马桶闭包:
fn main() { countdown(3, |_| ()); }
|_| ()
看起来像不像一个:toilet:?
任意的迭代的东西都可以放在 for in
循环中。
前面我们已经看到了range,也可以使用 for in
操作 Vec
:
fn main() { for i in vec![52, 49, 21] { println!("I like the number {}", i); } }
或者处理slice:
fn main() { for i in &[52, 49, 21] { println!("I like the number {}", i); } } // output: // I like the number 52 // I like the number 49 // I like the number 21
或者是一个实际的迭代器:
fn main() { // note: `&str` also has a `.bytes()` iterator. // Rust's `char` type is a "Unicode scalar value" for c in "rust".chars() { println!("Give me a {}", c); } } // output: // Give me a r // Give me a u // Give me a s // Give me a t
即使迭代器的元素被加上了过滤、映射、展开等操作:
fn main() { for c in "sHE'S brOKen" .chars() .filter(|c| c.is_uppercase() || !c.is_ascii_alphabetic()) .flat_map(|c| c.to_lowercase()) { print!("{}", c); } println!(); } // output: he's ok
你可以在一个函数中返回一个闭包:
fn make_tester(answer: String) -> impl Fn(&str) -> bool { move |challenge| { challenge == answer } } fn main() { // you can use `.into()` to perform conversions // between various types, here `&'static str` and `String` let test = make_tester("hunter2".into()); println!("{}", test("******")); println!("{}", test("hunter2")); }
甚至你可以move函数的参数的引用到闭包中返回:
fn make_tester(answer: &'a str) -> impl Fn(&str) -> bool + 'a { move |challenge| { challenge == answer } } fn main() { let test = make_tester("hunter2"); println!("{}", test("*******")); println!("{}", test("hunter2")); } // output: // false // true
省略生命周期名称:
fn make_tester(answer: &str) -> impl Fn(&str) -> bool + '_ { move |challenge| { challenge == answer } }
好了,半小时到了,通过本次学习,你应该能通过线上大部分的rust代码。
写rust代码和读rust又有很大的不同。一方面你不是在读一个问题的解决访问,而是正在解决它;另一方面Rust编译器会给你很大的帮助。
对于上面非法的rust代码,rustc总是会给你清楚的错误提示和富有洞察力的建议。
如果提示缺失,编译器组欢迎你提出来。
如果需要更多的Rust学习资料,你可以访问下面的资源:
我也会写一些关于rust的博文和tweet。
阅读愉快。
blablabla一堆感谢。