Netty学习笔记(番外篇) – ChannelHandler、ChannelPipeline和ChannelHandlerContext的联系
这一篇是 ChannelHandler 和 ChannelPipeline 的番外篇,主要从源码的角度来学习 ChannelHandler、ChannelHandler 和 ChannelPipeline 相互之间是如何建立联系和运行的。
一、添加 ChannelHandler
从上一篇的 demo 中可以看到在初始化 Server 和 Client 的时候,都会通过 ChannelPipeline 的 addLast 方法将 ChannelHandler 添加进去
// Server.java // 部分代码片段 ServerBootstrap serverBootstrap = new ServerBootstrap(); NioEventLoopGroup group = new NioEventLoopGroup(); serverBootstrap.group(group) .channel(NioServerSocketChannel.class)Channel .localAddress(new InetSocketAddress("localhost", 9999)) .childHandler(new ChannelInitializer() { protected void initChannel(SocketChannel socketChannel) throws Exception { // 添加ChannelHandler socketChannel.pipeline().addLast(new OneChannelOutBoundHandler()); socketChannel.pipeline().addLast(new OneChannelInBoundHandler()); socketChannel.pipeline().addLast(new TwoChannelInBoundHandler()); } });
在上面的代码片段中,socketChannel.pipeline()方法返回的是一个类型是 DefaultChannelPipeline 的实例,DefaultChannelPipeline 实现了 ChannelPipeline 接口
DefaultChannelPipeline 的 addLast 方法实现如下:
// DefaultChannelPipeline.java @Override public final ChannelPipeline addLast(ChannelHandler... handlers) { return addLast(null, handlers); } @Override public final ChannelPipeline addLast(EventExecutorGroup executor, ChannelHandler... handlers) { ObjectUtil.checkNotNull(handlers, "handlers"); for (ChannelHandler h: handlers) { if (h == null) { break; } addLast(executor, null, h); } return this; }
经过一系列重载方法调用,最终进入到下面的 addLast 方法
// DefaultChannelPipeline.java @Override public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) { final AbstractChannelHandlerContext newCtx; synchronized (this) { checkMultiplicity(handler); newCtx = newContext(group, filterName(name, handler), handler); addLast0(newCtx); // If the registered is false it means that the channel was not registered on an eventLoop yet. // In this case we add the context to the pipeline and add a task that will call // ChannelHandler.handlerAdded(...) once the channel is registered. if (!registered) { newCtx.setAddPending(); callHandlerCallbackLater(newCtx, true); return this; } EventExecutor executor = newCtx.executor(); if (!executor.inEventLoop()) { callHandlerAddedInEventLoop(newCtx, executor); return this; } } callHandlerAdded0(newCtx); return this; }
在这个方法实现中,利用传进来的 ChannelHandler 在 newContext 创建了一个 AbstractChannelHandlerContext 对象。newContext 方法实现如下:
// DefaultChannelPipeline.java private AbstractChannelHandlerContext newContext(EventExecutorGroup group, String name, ChannelHandler handler) { return new DefaultChannelHandlerContext(this, childExecutor(group), name, handler); }
这里创建并返回了一个类型为 DefaultChannelHandlerContext 的对象。从传入的参数可以看到,在这里将 ChannelHandlerContext、ChannelPipeline(this)和 ChannelHandler 三者建立了关系。
最后再看看 addLast0 方法实现:
// DefaultChannelPipeline.java private void addLast0(AbstractChannelHandlerContext newCtx) { AbstractChannelHandlerContext prev = tail.prev; newCtx.prev = prev; newCtx.next = tail; prev.next = newCtx; tail.prev = newCtx; }
这里出现了 AbstractChannelHandlerContext 的两个属性 prev 和 next,而 DefaultChannelPipeline 有一个属性 tail。从实现逻辑上看起来像是建立了一个双向链表的结构。下面的代码片段是关于 tail 和另一个相关属性 head:
// DefaultChannelPipeline.java public class DefaultChannelPipeline implements ChannelPipeline { final AbstractChannelHandlerContext head; final AbstractChannelHandlerContext tail; // ...... protected DefaultChannelPipeline(Channel channel) { // ...... tail = new TailContext(this); head = new HeadContext(this); head.next = tail; tail.prev = head; } // ...... } // HeaderContext.java final class HeadContext extends AbstractChannelHandlerContext implements ChannelOutboundHandler, ChannelInboundHandler { // ...... @Override public ChannelHandler handler() { return this; } //...... } // TailContext.java final class TailContext extends AbstractChannelHandlerContext implements ChannelInboundHandler { // ...... @Override public ChannelHandler handler() { return this; } // ...... }
DefaultChannelPipeline 内部维护了两个 AbstractChannelHandlerContext 类型的属性 head、tail,而这两个属性又都实现了 ChannelHandler 的子接口。构造方法里将这两个属性维护成了一个双向链表。结合上面的 addLast0 方法实现,可以知道在添加 ChannelHandler 的时候,其实是在对 ChannelPipeline 内部维护的双向链表做插入操作。
下面是 ChannelHandlerContext 相关类的结构
所以,对 ChannelPipeline 做 add 操作添加 ChannelHandler 后,内部结构大体是这样的:
所有的 ChannelHandlerContext 组成了一个双向链表,头部是 HeadContext,尾部是 TailContext,因为它们都实现了 ChannelHandler 接口,所以它们内部的 Handler 也是自己。每次添加一个 ChannelHandler,将会新创建一个 DefaultChannelHandler 关联,并按照一定的顺序插入到链表中。
在 AbstractChannelHandlerContext 类里有一个属性 executionMask,在构造方法初始化时会对它进行赋值
// AbstractChannelHandlerContext.java // 省略部分代码 AbstractChannelHandlerContext(DefaultChannelPipeline pipeline, EventExecutor executor, String name, Class extends ChannelHandler> handlerClass) { this.name = ObjectUtil.checkNotNull(name, "name"); this.pipeline = pipeline; this.executor = executor; this.executionMask = mask(handlerClass); // Its ordered if its driven by the EventLoop or the given Executor is an instanceof OrderedEventExecutor. ordered = executor == null || executor instanceof OrderedEventExecutor; } // 省略部分代码
mask 是一个静态方法,来自于 ChannelHandlerMask 类
// ChannelHandlerMask.java // 省略部分代码 /** * Return the {@code executionMask}. */ static int mask(Class extends ChannelHandler> clazz) { // Try to obtain the mask from the cache first. If this fails calculate it and put it in the cache for fast // lookup in the future. Map, Integer> cache = MASKS.get(); Integer mask = cache.get(clazz); if (mask == null) { mask = mask0(clazz); cache.put(clazz, mask); } return mask; } /** * Calculate the {@code executionMask}. */ private static int mask0(Class extends ChannelHandler> handlerType) { int mask = MASK_EXCEPTION_CAUGHT; try { if (ChannelInboundHandler.class.isAssignableFrom(handlerType)) { mask |= MASK_ALL_INBOUND; if (isSkippable(handlerType, "channelRegistered", ChannelHandlerContext.class)) { mask &= ~MASK_CHANNEL_REGISTERED; } if (isSkippable(handlerType, "channelUnregistered", ChannelHandlerContext.class)) { mask &= ~MASK_CHANNEL_UNREGISTERED; } if (isSkippable(handlerType, "channelActive", ChannelHandlerContext.class)) { mask &= ~MASK_CHANNEL_ACTIVE; } if (isSkippable(handlerType, "channelInactive", ChannelHandlerContext.class)) { mask &= ~MASK_CHANNEL_INACTIVE; } if (isSkippable(handlerType, "channelRead", ChannelHandlerContext.class, Object.class)) { mask &= ~MASK_CHANNEL_READ; } if (isSkippable(handlerType, "channelReadComplete", ChannelHandlerContext.class)) { mask &= ~MASK_CHANNEL_READ_COMPLETE; } if (isSkippable(handlerType, "channelWritabilityChanged", ChannelHandlerContext.class)) { mask &= ~MASK_CHANNEL_WRITABILITY_CHANGED; } if (isSkippable(handlerType, "userEventTriggered", ChannelHandlerContext.class, Object.class)) { mask &= ~MASK_USER_EVENT_TRIGGERED; } } if (ChannelOutboundHandler.class.isAssignableFrom(handlerType)) { mask |= MASK_ALL_OUTBOUND; if (isSkippable(handlerType, "bind", ChannelHandlerContext.class, SocketAddress.class, ChannelPromise.class)) { mask &= ~MASK_BIND; } if (isSkippable(handlerType, "connect", ChannelHandlerContext.class, SocketAddress.class, SocketAddress.class, ChannelPromise.class)) { mask &= ~MASK_CONNECT; } if (isSkippable(handlerType, "disconnect", ChannelHandlerContext.class, ChannelPromise.class)) { mask &= ~MASK_DISCONNECT; } if (isSkippable(handlerType, "close", ChannelHandlerContext.class, ChannelPromise.class)) { mask &= ~MASK_CLOSE; } if (isSkippable(handlerType, "deregister", ChannelHandlerContext.class, ChannelPromise.class)) { mask &= ~MASK_DEREGISTER; } if (isSkippable(handlerType, "read", ChannelHandlerContext.class)) { mask &= ~MASK_READ; } if (isSkippable(handlerType, "write", ChannelHandlerContext.class, Object.class, ChannelPromise.class)) { mask &= ~MASK_WRITE; } if (isSkippable(handlerType, "flush", ChannelHandlerContext.class)) { mask &= ~MASK_FLUSH; } } if (isSkippable(handlerType, "exceptionCaught", ChannelHandlerContext.class, Throwable.class)) { mask &= ~MASK_EXCEPTION_CAUGHT; } } catch (Exception e) { // Should never reach here. PlatformDependent.throwException(e); } return mask; } @SuppressWarnings("rawtypes") private static boolean isSkippable( final Class> handlerType, final String methodName, final Class>... paramTypes) throws Exception { return AccessController.doPrivileged(new PrivilegedExceptionAction () { @Override public Boolean run() throws Exception { Method m; try { m = handlerType.getMethod(methodName, paramTypes); } catch (NoSuchMethodException e) { if (logger.isDebugEnabled()) { logger.debug( "Class {} missing method {}, assume we can not skip execution", handlerType, methodName, e); } return false; } return m != null && m.isAnnotationPresent(Skip.class); } }); } // 省略部分代码
以上代码实现逻辑是这样的:当创建一个 ChannelHandlerContext 时,会与一个 ChannelHandler 绑定,同时会将传递进来的 ChannelHandler 进行解析,解析当前 ChannelHandler 支持哪些回调方法,并通过位运算得到一个结果保存在 ChannelHandlerContext 的 executionMask 属性里。注意 m.isAnnotationPresent(Skip.class)这里,ChannelHandler 的基类 ChannelInboundHandlerAdapter 和 ChannelOutboundHandlerAdapter 里的回调方法上都有@Skip 注解,当继承了这两个类并重写了某个回调方法后,这个方法上的注解就会被覆盖掉,解析时就会被认为当前 ChannelHandler 支持这个回调方法。
下面是每个回调方法对应的掩码
// ChannelHandlerMask.java final class ChannelHandlerMask { // Using to mask which methods must be called for a ChannelHandler. static final int MASK_EXCEPTION_CAUGHT = 1; static final int MASK_CHANNEL_REGISTERED = 1 << 1; static final int MASK_CHANNEL_UNREGISTERED = 1 << 2; static final int MASK_CHANNEL_ACTIVE = 1 << 3; static final int MASK_CHANNEL_INACTIVE = 1 << 4; static final int MASK_CHANNEL_READ = 1 << 5; static final int MASK_CHANNEL_READ_COMPLETE = 1 << 6; static final int MASK_USER_EVENT_TRIGGERED = 1 << 7; static final int MASK_CHANNEL_WRITABILITY_CHANGED = 1 << 8; static final int MASK_BIND = 1 << 9; static final int MASK_CONNECT = 1 << 10; static final int MASK_DISCONNECT = 1 << 11; static final int MASK_CLOSE = 1 << 12; static final int MASK_DEREGISTER = 1 << 13; static final int MASK_READ = 1 << 14; static final int MASK_WRITE = 1 << 15; static final int MASK_FLUSH = 1 << 16; static final int MASK_ONLY_INBOUND = MASK_CHANNEL_REGISTERED | MASK_CHANNEL_UNREGISTERED | MASK_CHANNEL_ACTIVE | MASK_CHANNEL_INACTIVE | MASK_CHANNEL_READ | MASK_CHANNEL_READ_COMPLETE | MASK_USER_EVENT_TRIGGERED | MASK_CHANNEL_WRITABILITY_CHANGED; private static final int MASK_ALL_INBOUND = MASK_EXCEPTION_CAUGHT | MASK_ONLY_INBOUND; static final int MASK_ONLY_OUTBOUND = MASK_BIND | MASK_CONNECT | MASK_DISCONNECT | MASK_CLOSE | MASK_DEREGISTER | MASK_READ | MASK_WRITE | MASK_FLUSH; private static final int MASK_ALL_OUTBOUND = MASK_EXCEPTION_CAUGHT | MASK_ONLY_OUTBOUND; }
二、ChannelHandler 处理消息
我们以消息读取和写入为例,来看看在 ChannelPipeline 里的各个 ChannelHandler 是如何按照顺序处理消息和事件的。
读取消息
当 Channel 读取到消息后,会在以下地方调用 ChannelPipeline 的 fireChannelRead 方法:
// AbstractNioMessageClient.java private final class NioMessageUnsafe extends AbstractNioUnsafe { // 省略代码 @Override public void read() { // ...... for (int i = 0; i < size; i ++) { readPending = false; pipeline.fireChannelRead(readBuf.get(i)); } // ...... } // 省略代码 } // DefaultChannelPipeline.java // 省略代码 @Override public final ChannelPipeline fireChannelRead(Object msg) { AbstractChannelHandlerContext.invokeChannelRead(head, msg); return this; } // 省略代码
可以看到,通过 AbstractChannelHandlerContext 的 invokeChannelRead 方法,传递 head,从头部开始触发读取事件。
// AbstractChannelHandlerContext.java // 省略代码 static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) { final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next); EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeChannelRead(m); } else { executor.execute(new Runnable() { @Override public void run() { next.invokeChannelRead(m); } }); } } private void invokeChannelRead(Object msg) { if (invokeHandler()) { try { ((ChannelInboundHandler) handler()).channelRead(this, msg); } catch (Throwable t) { invokeExceptionCaught(t); } } else { fireChannelRead(msg); } } /** * Makes best possible effort to detect if {@link ChannelHandler#handlerAdded(ChannelHandlerContext)} was called * yet. If not return {@code false} and if called or could not detect return {@code true}. * * If this method returns {@code false} we will not invoke the {@link ChannelHandler} but just forward the event. * This is needed as {@link DefaultChannelPipeline} may already put the {@link ChannelHandler} in the linked-list * but not called {@link ChannelHandler#handlerAdded(ChannelHandlerContext)}. */ private boolean invokeHandler() { // Store in local variable to reduce volatile reads. int handlerState = this.handlerState; return handlerState == ADD_COMPLETE || (!ordered && handlerState == ADD_PENDING); } // 省略代码
在这里通过 invokeHandler 方法对当前 ChannelHandler 进行状态检查,通过了就将调用当前 ChannelHandler 的 channelRead 方法,没有通过将调用 fireChannelRead 方法将事件传递到下一个 ChannelHandler 上。而 head 的类型是 HeadContext,本身也实现了 ChannelInBoundHandler 接口,所以这里调用的是 HeadContext 的 channelRead 方法。
// DefaultChannelPipeline.java final class HeadContext extends AbstractChannelHandlerContext implements ChannelOutboundHandler, ChannelInboundHandler { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) { ctx.fireChannelRead(msg); } }
这里对消息没有做任何处理,直接将读取消息传递下去。接下来看看 ChannelHandlerContext 的 fireChannelRead 做了什么
// AbstractChannelHandlerContext.java @Override public ChannelHandlerContext fireChannelRead(final Object msg) { invokeChannelRead(findContextInbound(MASK_CHANNEL_READ), msg); return this; } private AbstractChannelHandlerContext findContextInbound(int mask) { AbstractChannelHandlerContext ctx = this; EventExecutor currentExecutor = executor(); do { ctx = ctx.next; } while (skipContext(ctx, currentExecutor, mask, MASK_ONLY_INBOUND)); return ctx; } private static boolean skipContext( AbstractChannelHandlerContext ctx, EventExecutor currentExecutor, int mask, int onlyMask) { // Ensure we correctly handle MASK_EXCEPTION_CAUGHT which is not included in the MASK_EXCEPTION_CAUGHT return (ctx.executionMask & (onlyMask | mask)) == 0 || // We can only skip if the EventExecutor is the same as otherwise we need to ensure we offload // everything to preserve ordering. // // See https://github.com/netty/netty/issues/10067 (ctx.executor() == currentExecutor && (ctx.executionMask & mask) == 0); }
这里实现的逻辑是这样的:在双向链表中,从当前 ChannelHandlerContext 节点向后寻找,直到找到匹配 MASK_CHANNEL_READ 这个掩码的 ChannelHandlerContext。从上面的章节里可以直到 ChannelHandlerContext 的属性里保存了当前 ChannelHandler 支持(重写)的所有方法掩码的位运算值,通过位运算的结果来找到实现了对应方法的最近的 ChannelHandlerContext。
链表最后一个节点是 TailContext
// DefaultChannelPipeline.java final class TailContext extends AbstractChannelHandlerContext implements ChannelInboundHandler { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) { onUnhandledInboundMessage(ctx, msg); } /** * Called once a message hit the end of the {@link ChannelPipeline} without been handled by the user * in {@link ChannelInboundHandler#channelRead(ChannelHandlerContext, Object)}. This method is responsible * to call {@link ReferenceCountUtil#release(Object)} on the given msg at some point. */ protected void onUnhandledInboundMessage(ChannelHandlerContext ctx, Object msg) { onUnhandledInboundMessage(msg); if (logger.isDebugEnabled()) { logger.debug("Discarded message pipeline : {}. Channel : {}.", ctx.pipeline().names(), ctx.channel()); } } /** * Called once a message hit the end of the {@link ChannelPipeline} without been handled by the user * in {@link ChannelInboundHandler#channelRead(ChannelHandlerContext, Object)}. This method is responsible * to call {@link ReferenceCountUtil#release(Object)} on the given msg at some point. */ protected void onUnhandledInboundMessage(Object msg) { try { logger.debug( "Discarded inbound message {} that reached at the tail of the pipeline. " + "Please check your pipeline configuration.", msg); } finally { ReferenceCountUtil.release(msg); } } }
可以看到,tail 节点的 channelRead 方法没有将事件继续传递下去,只是释放了 msg。
写入消息
我们通过 OneChannelInBoundHandler 的 channelReadComplete 方法里的 ctx.write 方法来看
// AbstractChannelHandlerContext.java // 省略代码 @Override public ChannelFuture write(Object msg) { return write(msg, newPromise()); } @Override public ChannelFuture write(final Object msg, final ChannelPromise promise) { write(msg, false, promise); return promise; } private void write(Object msg, boolean flush, ChannelPromise promise) { ObjectUtil.checkNotNull(msg, "msg"); try { if (isNotValidPromise(promise, true)) { ReferenceCountUtil.release(msg); // cancelled return; } } catch (RuntimeException e) { ReferenceCountUtil.release(msg); throw e; } final AbstractChannelHandlerContext next = findContextOutbound(flush ? (MASK_WRITE | MASK_FLUSH) : MASK_WRITE); final Object m = pipeline.touch(msg, next); EventExecutor executor = next.executor(); if (executor.inEventLoop()) { if (flush) { next.invokeWriteAndFlush(m, promise); } else { next.invokeWrite(m, promise); } } else { final WriteTask task = WriteTask.newInstance(next, m, promise, flush); if (!safeExecute(executor, task, promise, m, !flush)) { // We failed to submit the WriteTask. We need to cancel it so we decrement the pending bytes // and put it back in the Recycler for re-use later. // // See https://github.com/netty/netty/issues/8343. task.cancel(); } } } private AbstractChannelHandlerContext findContextOutbound(int mask) { AbstractChannelHandlerContext ctx = this; EventExecutor currentExecutor = executor(); do { ctx = ctx.prev; } while (skipContext(ctx, currentExecutor, mask, MASK_ONLY_OUTBOUND)); return ctx; } // 省略代码
通过调用一系列重载的 write 方法后,通过 findContextOutbound 方法在双向链表里向前寻找最近的实现了 write 或 writeAndFlush 方法的 ChannelHandlerContext,调用它的 invokeWrite 或 invokeWriteAndFlush 方法。
// AbstractChannelHandlerContext.java // 省略代码 void invokeWrite(Object msg, ChannelPromise promise) { if (invokeHandler()) { invokeWrite0(msg, promise); } else { write(msg, promise); } } private void invokeWrite0(Object msg, ChannelPromise promise) { try { ((ChannelOutboundHandler) handler()).write(this, msg, promise); } catch (Throwable t) { notifyOutboundHandlerException(t, promise); } } // 省略代码
同理于读取消息,这里经过 invokeHandler 方法检查通过后调用找到的 ChannelHandlerContext 的 ChannelHandler,没有通过检查,则继续向前传递写入事件。当写入消息传递到头部,调用 HeadContext 的 write 方法
// DefaultChannelPipeline.java final class HeadContext extends AbstractChannelHandlerContext implements ChannelOutboundHandler, ChannelInboundHandler { private final Unsafe unsafe; // 省略代码 @Override public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) { unsafe.write(msg, promise); } @Override public void flush(ChannelHandlerContext ctx) { unsafe.flush(); } // 省略代码 }
最终通过调用 unsafe 的 write 方法写入消息。
最后,从上面的实现里可以发现,在将 ChannelHandler 加入到 ChannelPipeline 时,要把 ChannelOutBoundHandler 类型的 ChannelHandler 进来添加在前面,否则在 ChannelInBoundHandler 写入消息时,在它后面的 ChannelOutBoundHandler 将无法获取到事件。