Monero技术详解(三):核心技术——环签名(1)

在前文介绍了Monero的一次性地址方案。从方案看来,Monero中的UTXO只有一次性地址,用户地址是产生一次性地址的基础,用户对UTXO的所有权并不能显现地看出来。发送人在每次交易时创建一次性地址来接收UTXO,并将一次性地址的相关私密信息(一次性私钥)秘密地传递给接收人,用以保护接收人隐私。这样,每个UTXO都具有不同的一次性地址,同一用户的不同笔UTXO“收入”都看上去没有联系。但是如果仅仅使用一次性地址,那么只要UTXO被花费出去,那么同一交易连接的输入输出的UTXO之间也可以产生联系,也就是说资金的链路还是没有被打断或者混淆,资金的走向还是清晰可见。

从观察者角度来看,每个UTXO可以看成与不同的用户对应。如果发送人在发送交易的时候引入多个UTXO,并且将真正的UTXO混淆与引入的UTXO集合之中,这样观察者追踪资金链路的难度将会加大。多次交易之后资金的追踪将会是实际上不可行。那么问题出现了,如何将多个UTXO涉及的一次性地址“捆绑”在一起呢?这里需要使用到环(群)签名方案。

1. 环签名概念介绍

将真正签名人隐藏于多个“助攻”签名人集合之中这一想法最早起源于 群签名 ,在群签名之中存在分发中心,分发中心不仅负责分发产生与分发密钥,并且有机制可以恢复出真正的签名人。但是在环签名中,分发中心被彻底取消。用户密钥不需要分发,只要用户自己生成,也无法恢复出真正的签名人身份。

具体来说,环签名具有如下几个性质:

  1. 签名人混淆性质:旁观者只能确定签名出自于群体中的某一成员,仅此而已,具体何人,无从得知,
  2. 可链接性:如果同一私钥对不同的消息进行签名,那么有算法可以判定这两个签名出自于同一私钥只手。这种可链接性可与群体有关系,也可与群体无关系。与群体有关系是指,两个环签名所选的混淆群体不同,那么可能无法获知两个环签名是否出自于同一私钥。与群体无关系,就是说无论两个环签名算选的混淆群体是否相同,那么只要这两个环签名出自于同一私钥,就可以链接起来。
  3. 不可伪造性:没有私钥不能伪造一个合法的环签名。

虽然环签名概念本身与Monero并无关系,但是这里依然用Monero的场景来举例说明某几个环签名方案。

2. Version-1: 绑定群体的可链接性

2.1 方案

以3个UTXO作为混淆输入为例。假设发送人Alice拥有某一UTXO,其一次性地址为$K^a_2 \rightarrow K_2$,其对应的一次性私钥是$k^a_2 \rightarrow k_2$。并且假设交易发送给Bob且是单输出(此处多输出并无不同)。Alice同时选择3个一次性地址$K_1,K_3,K_4$(不需要拥有其对应的私钥),组成环$\mathcal{R} = {K_1,K_2,K_3,K_4}$,接下来Alice如下步骤操作来签名交易信息$msg$:

  1. 利用自己掌握的私钥$k_2$作:$\tilde{K} \leftarrow k_2\mathcal{H}_p(\mathcal{R})$;// $\mathcal{H}_p(\mathcal{R})$是椭圆曲线上的点

  2. 产生随机数$\alpha$与$r_1,r_3,r_4$;// 不产生$r_2$

  3. 计算“签名环”的“接头点” $$ c_3 \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, \alpha G, \alpha \mathcal{H}_p(\mathcal{R})) $$

  4. 逐步“编织”签名环: $$ D_4 \leftarrow r_3G + c_3K_3, \ \ \ E_4 \leftarrow r_3\mathcal{H}_p(\mathcal{R}) + c_3\tilde{K}, \ c_4 \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_4, E_4) $$

    $$ D_1 \leftarrow r_4G + c_4K_4, \ \ \ E_1 \leftarrow r_4\mathcal{H}_p(\mathcal{R}) + c_4\tilde{K}, \ c_1 \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_1, E_1) $$

    $$ D_2 \leftarrow r_1G + c_1K_1, \ \ \ E_2 \leftarrow r_1\mathcal{H}_p(\mathcal{R}) + c_1\tilde{K}, \ c_2 \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_2, E_2) $$ //其中$\mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_2, E_2)$是数域上的标量

  5. “焊接”首尾成为签名环: $$ r_2 \leftarrow \alpha – c_2k_2 $$

输出结果签名$\sigma(msg) = (c_1, r_1, r_2, r_3, r_4)$,密钥像$\tilde{K}$($\tilde{K}$实际上是对真正签名人信息和用于混淆的所有公钥信息的承诺),以及成员集合$\mathcal{R}$。

2.2 验签

验签过程实际上就是从起点(并不一定是签名人的“起始点”)开始,依次验证签名环中相邻的两个节点之间是否满足“编织”的映射关系,并最终是否能回到起始点。

形式化地描述,对于签名$\sigma = (c_1, r_1, r_2, r_3, r_4)$、密钥像$\tilde{K}$、消息$msg$、公钥集合$\mathcal{R} = {K_1,K_2,K_3,K_4}$,令依次验证: $$ D_2′ \leftarrow r_1G + c_1K_1, \ \ \ E_2′ \leftarrow r_1\mathcal{H}_p(\mathcal{R}) + c_1\tilde{K}, \ c_2′ \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_2′, E_2′), \ \ \ c_2′ == c_2 $$

$$ D_3′ \leftarrow r_2G + c_2K_2, \ \ \ E_3′ \leftarrow r_2\mathcal{H}_p(\mathcal{R}) + c_2\tilde{K}, \ c_3′ \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_3′, E_3′), \ \ \ c_3′ == c_3 $$

$$ D_4′ \leftarrow r_3G + c_3K_3, \ \ \ E_4′ \leftarrow r_3\mathcal{H}_p(\mathcal{R}) + c_3\tilde{K}, \ c_4′ \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_4′, E_4′), \ \ \ c_4′ == c_4 $$

$$ D_1′ \leftarrow r_4G + c_4K_4, \ \ \ E_1′ \leftarrow r_4\mathcal{H}_p(\mathcal{R}) + c_4\tilde{K}, \ c_1′ \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_1′, E_1′), \ \ \ c_1′ == c_1 $$

2.3 解释

将以上的方案图式化如上图。签名环从接头点——第三个节点着手,开始编织签名环。从上一个节点到下一个节点通过3个映射关系连接起来。结合随机数,计算这个三个映射关系,得到下一个签名环节点。按此方式编织下去,得到一个“签名带”,需要将签名带的首尾焊接起来,获得一个完整的环状结构。如果在没有部分私密信息的情况下,签名带只能一直向下编织,而不能回头与起始点衔接,因为从例子可以看出,从$D_3$和$E_3$映射出来的$c’_3 \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_3, E_3)$(为了与起点的$c_3$区别,记作$c’_3$)不能与起点的$c_3$相同,所以首尾连接失败。但是幸亏在起始点上拥有“陷门”信息——私钥$k_2$。具体的做法:

起始点:$c_3 = \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, \alpha G, \alpha \mathcal{H}_p(\mathcal{R}))$

结尾点:$c’_3 \leftarrow \mathcal{H}_n(\mathcal{R}, \tilde{K}, msg, D_3, E_3)$,且$D_3 = r_2G + c_2K_2$,$E_3 = r_2\mathcal{H}_p(\mathcal{R}) + c_2\tilde{K}$

如果要让$c_3 = c’_3$,需要让 $$ \alpha G = r_2G + c_2K_2 = (r_2+c_2k_2)G $$

$$ \alpha \mathcal{H}_p(\mathcal{R}) = r_2\mathcal{H}_p(\mathcal{R}) + c_2\tilde{K} = (r_2+c_2k_2)\mathcal{H}_p(\mathcal{R}) $$

在产生随机数${r_i}$时刻意没有产生随机的$r_2$,取而代之的是$\alpha$,这让签名环的收尾衔接有了可能。要让以上两等式成立,只需可以巧妙拼凑$r_2$来达到目的。这里令$r_2\leftarrow \alpha – c_2k_2$即可。

这种预先埋陷门的方式,让带状结构首尾衔接成了完整的环状结构,并且从签名环看来,无法看出签名的起点(起点即是真正的签名人)。

2.4 问题

如上所说,环签名需要有可链接性,即当同一私钥对不同消息$msg_1$和$msg_2$分别作出两个不同的签名$\sigma_1$和$\sigma_2$时,这两个签名就是链接起来的。在Monero中,如果发现同一UTXO的私钥作了两个不同的签名,说明该UTXO有被双花的恶意。有一笔交易将被判定为非法。上述方案的可链接性需要用于 混淆两个签名的参与者集合 也相同才可以(实际使用中,通过判定密钥像$\tilde{K}$是否曾经出现过来判断UTXO是否双花),但是恶意的发送中用不同的签名者集合就会逃过这一检查。本方案对于用户量少且固定的场景较为合适,因为这样可以将所有的用户公钥都作为混淆个体。当用户不固定时将不具有可链接性。Monero中每个UTXO对应一个(一次性)公钥,所以以上方案对于Monero并不适用。

3. Version-2: 独立于群体的可链接性

为了让发送者在选择不同的群体时也不能发动双花交易,需要让环签名方案拥有的独立于群体的可链接性,即无论签名者在两次签名所使用的混淆集合是否相同,只要真正签名人相同,那么着两个签名就可以判定为是同一个签名人所为。为此,可以将Version-1的方案中的密钥像$\tilde{K}$替换成只与签名人有关的信息(Version-1中$\tilde{K}$包含的是真正签名人信息和用于混淆的所有公钥信息)——$\tilde{K} \leftarrow k_2\mathcal{H}_p(K_2)$作为密钥像。其他细节与Version-1几乎相同,也是从起始点“编织”签名带,再利用真正的私钥作为陷门将签名带的结尾与起始点巧妙焊接。

3.1 方案

同样以Version-1的场景为例描述方案。

  1. 利用自己掌握的私钥$k_2$作:$\tilde{K} \leftarrow k_2\mathcal{H}_p(K_2)$;

  2. 产生随机数$\alpha$与$r_1,r_3,r_4$;// 不产生$r_2$

  3. 计算“签名环”的“接头点” $$ c_3 \leftarrow \mathcal{H}_n( msg, \alpha G, \alpha \mathcal{H}_p(K_2)) $$

  4. 逐步“编织”签名环: $$ D_4 \leftarrow r_3G + c_3K_3, \ \ \ E_4 \leftarrow r_3\mathcal{H}_p(K_2) + c_3\tilde{K}, \ c_4 \leftarrow \mathcal{H}_n( msg, D_4, E_4) $$

    $$ D_1 \leftarrow r_4G + c_4K_4, \ \ \ E_1 \leftarrow r_4\mathcal{H}_p(K_2) + c_4\tilde{K}, \ c_1 \leftarrow \mathcal{H}_n(msg, D_1, E_1) $$

    $$ D_2 \leftarrow r_1G + c_1K_1, \ \ \ E_2 \leftarrow r_1\mathcal{H}_p(K_2) + c_1\tilde{K}, \ c_2 \leftarrow \mathcal{H}_n(msg, D_2, E_2) $$ //其中$\mathcal{H}_n(msg, D_2, E_2)$没有在像Version-1中把环成员$\mathcal{R}$和密钥像$\tilde{K}$纳入其中。

  5. “焊接”首尾成为签名环: $$ r_2 \leftarrow \alpha – c_2k_2 $$

输出结果签名$\sigma(msg) = (c_1, r_1, r_2, r_3, r_4)$,密钥像$\tilde{K}$,以及成员集合$\mathcal{R}$。

验签过程与Version-1几乎相同。

4. Version-3: 简单的多UTXO输入版本

以上的两个方案都都是要发送单个UTXO。发送人都是以私钥为$k_2$,公钥为$K_2$的UTXO为输入来组织交易的环签名的。但是实际中发送人需要组织多个UTXO的环签名。

例如发送人拥有2个UTXO,对应的公私钥对分别是$UTXO 1:(K {1,2}, k_{1,2})$、$UTXO 2:(K {2,3}, k_{2,3})$。可以对每个UTXO,运用 Version-2的方案构建独立的环签名放入到交易中。但是这样的问题是,环签名的数量与输入的UTXO数量成线性增长,这使得交易数据的空间复杂度与签名、验签的时间复杂度都成线性增长,有优化的空间。

总之,真正的签名人,“编织”签名带,并且最终,运用自己所具有的私钥作为“焊接”器,讲编织带的收尾完美地焊接起来。使之成为一个外观完美的环。

环签名的作用不仅仅可以用来混淆发送者,还可以用来作资金数额的区间证明,这个将在后续文章介绍。