Minimum Moves to Equal Array Elements II
今天的题目是 Minimum Moves to Equal Array Elements II
:
Given a non-empty
integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.
You may assume the array’s length is at most 10,000.
Example:
Input: [1,2,3] Output: 2 Explanation: Only two moves are needed (remember each move increments or decrements one element): [1,2,3] => [2,2,3] => [2,2,2]
这道题需要一些数学推导,它的目标就是:
$$
min_k { \sum_{i=1}^n |n_i – n_k| }
$$
其中 $n_i$ 表示数组排序后中第 $i$ 个元素。
我们将式子展开可以得到:
$$
min_k { \sum_{i=1}^n |n_i – n_k| } =
min_k { \sum_{i=1}^k (n_k-n_i) + \sum_{i=k+1}^n(n_i-n_k) } \
= min_k { \sum_{i=1}^k n_k – \sum_{i=1}^k n_i + \sum_{i=k+1}^n n_i – \sum_{i=k+1}^n n_k } \
= min_k { \sum_{i=k+1}^n n_i – \sum_{i=1}^k n_i + (2k – n)n_k }
$$
因此,我们可以写出如下代码:
int minMoves2(vector& nums) { long long res = LONG_MAX; sort(nums.begin(), nums.end()); long long rightSum = 0; for(auto i: nums) rightSum += i; long long leftSum = 0; int n = nums.size(); for(int i = 0;i < n; ++i) { res = min(res, rightSum - leftSum + (2*i - n) * (long long)nums[i]); rightSum -= nums[i]; leftSum += nums[i]; // cout << res << endl; } return res; }
这样还不是最优解,然而最优解我没看懂(捂脸),为什么用中位数求就是对的呢?:
int minMoves2(vector& nums) { sort(nums.begin(), nums.end()); int mid; if (nums.size() % 2 == 0){ mid = (nums[nums.size()/2] + nums[(nums.size()/2) - 1])/2; }else{ mid = nums[nums.size()/2]; } int result = 0; for (int i = 0; i < nums.size(); i++){ result += abs(nums[i] - mid); } return result; }