LeakCanary原理

LeakCanary原理

前言

Leakcanary是由Square公司开源的一款轻量的第三方检测内存泄露的工具
主要原理 watch一个即将要销毁的对象,比如监控一个activity处于什么状态。
先来看一下java内存中几个比较重要的部分

  • 栈(stack) 存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中
  • 堆(heap) 主要存放用new产生的数据,是垃圾回收器主要回收的部分
  • 方法区 存储每个类的信息(包括类的名称、方法信息、字段信息)静态变量、常量以及编译器变异后的的代码等

为什么会产生内存泄露
当一个对象已经不再使用了,本应该回收,但是一个能到达GCRoot的对象还持有它的引用,导致它无法被回收,还停留在堆内存中,导致内存泄漏
LeakCanary原理:

  • 当一个Activity Destory之后,将它放在一个WeakReference弱引用中中
  • 把这个WeakReference关联到一个ReferenceQueue
  • 查看ReferenceQueue中是否存在Activity的引用
  • 如果Activity泄露了,就Dump出heap信息,然后去分析内存泄露的路径

java中的4中引用类型

  • 强引用:不会被GC回收
  • 软引用:内存不足的时候会被GC回收
  • 弱引用:当下次GC的时候会回收
  • 虚引用:任何情况都可以回收

ReferenceQueue 引用队列 软引用和弱引用都可以和它集合使用,如果软引用或者弱引用中的对象被垃圾回收了,java虚拟机会吧这个引用加入到与之关联的引用队列当中。

LeakCanary源码分析

一般是在Application的onCreate方法中初始化

@Override
  public void onCreate() {
      super.onCreate();
      if (LeakCanary.isInAnalyzerProcess(this)) {
          return;
      }
      LeakCanary.install(this);
  }

进入install方法

public static @NonNull RefWatcher install(@NonNull Application application) {
   return refWatcher(application).listenerServiceClass(DisplayLeakService.class)
       .excludedRefs(AndroidExcludedRefs.createAppDefaults().build())
       .buildAndInstall();
 }

返回一个RefWatcher对象,这个对象是用来监视应该成为弱引用的对象。最终通过buildAndInstall()这个方法创建出来。

public @NonNull RefWatcher buildAndInstall() {
  if (LeakCanaryInternals.installedRefWatcher != null) {
    throw new UnsupportedOperationException("buildAndInstall() should only be called once.");
  }
  RefWatcher refWatcher = build();
  //如果是在别的进程中,会跟DISABLED相等
  if (refWatcher != DISABLED) {
    if (enableDisplayLeakActivity) {
      LeakCanaryInternals.setEnabledAsync(context, DisplayLeakActivity.class, true);
    }
    //默认为true
    if (watchActivities) {
      ActivityRefWatcher.install(context, refWatcher);
    }
    //默认为true
    if (watchFragments) {
      FragmentRefWatcher.Helper.install(context, refWatcher);
    }
  }
  LeakCanaryInternals.installedRefWatcher = refWatcher;
  return refWatcher;
}

通过build方法创建出RefWatcher,如果是别的进程,就直接返回成员变量DISABLED,如果不是创建新的RefWatcher并返回。
如果允许显示内存泄露的Activity,就设置可显示,DisplayLeakActivity就是当有内存泄露的时候,LeakCanary给我们提供的可视化的那个界面
分别创建ActivityRefWatcher和FragmentRefWatcher,首先看ActivityRefWatcher.install方法

public static void install(@NonNull Context context, @NonNull RefWatcher refWatcher) {
  Application application = (Application) context.getApplicationContext();
  ActivityRefWatcher activityRefWatcher = new ActivityRefWatcher(application, refWatcher);

  application.registerActivityLifecycleCallbacks(activityRefWatcher.lifecycleCallbacks);
}
private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
    new ActivityLifecycleCallbacksAdapter() {
      @Override public void onActivityDestroyed(Activity activity) {
        refWatcher.watch(activity);
      }
    };

通过传入的context拿到Application ,并创建ActivityRefWatcher ,最后通过application注册Activity的生命周期回到函数,并传入自己的callback。ActivityLifecycleCallbacksAdapter继承自Android系统的Application.ActivityLifecycleCallbacks接口,主要为了简化代码,因为只用到了onActivityDestroyed这一个方法。这个接口是Andorid系统为我们提供的可以监听到每个Activity的生命周期。
在回调函数中可以看到,当监听到一个Activity销毁的时候,就通过refWatcher.watch(activity)方法把这个Activity关联到RefWatcher中。
在查看watch方法之前,先来看一下RefWatcher有哪些成员变量

public final class RefWatcher {

  public static final RefWatcher DISABLED = new RefWatcherBuilder().build();

  private final WatchExecutor watchExecutor;
  private final DebuggerControl debuggerControl;
  private final GcTrigger gcTrigger;
  private final HeapDumper heapDumper;
  private final HeapDump.Listener heapdumpListener;
  private final HeapDump.Builder heapDumpBuilder;
  private final Set retainedKeys;
  private final ReferenceQueue queue;
  
  ....

  • WatchExecutor: 用于执行内存泄露的检测
  • DebuggerControl: 判断是否是调试状态,调试状态是不用检测内存泄露的
  • GcTrigger: 用来处理GC,当检测到一个对象可能会内存泄露的时候,它会调用其中的方法在手动GC一下,看是否能回收这个对象,如果不能回收那这个对象就泄露了
  • HeapDumper: dump出内存泄露的堆文件
  • HeapDump.Listener: 用来分析产生heap文件的回调
  • HeapDump.Builder:HeapDump的构建者对象
  • Set: 集合,持有待检测的和已经产生内存泄露的引用的key
  • ReferenceQueue: 判断弱引用所持有的对象是否执行了GC垃圾回收

OK,现在去查看watch方法

public void watch(Object watchedReference) {
   watch(watchedReference, "");
 }
public void watch(Object watchedReference, String referenceName) {
   if (this == DISABLED) {
     return;
   }
   checkNotNull(watchedReference, "watchedReference");
   checkNotNull(referenceName, "referenceName");
   final long watchStartNanoTime = System.nanoTime();
   String key = UUID.randomUUID().toString();
   retainedKeys.add(key);
   final KeyedWeakReference reference =
       new KeyedWeakReference(watchedReference, key, referenceName, queue);

   ensureGoneAsync(watchStartNanoTime, reference);
 }
 final class KeyedWeakReference extends WeakReference {}

创建了一个唯一key,然后放到成员变量set中保存,之后创建了一个KeyedWeakReference这个弱引用。用来保存需要分析的对象,最后执行异步方法ensureGoneAsync来分析这个弱引用对象。

private void ensureGoneAsync(final long watchStartNanoTime, final KeyedWeakReference reference) {
  watchExecutor.execute(new Retryable() {
    @Override public Retryable.Result run() {
      return ensureGone(reference, watchStartNanoTime);
    }
  });
}

在子线程中执行ensureGone方法来分析对象是否真的被回收了

Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) {
  long gcStartNanoTime = System.nanoTime();
  //从我们调用watch方法到现在的总共使用的时间
  long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);
  //清除set集合中 已经到达引用队列中的弱引用
  removeWeaklyReachableReferences();
  //如果在调试状态 就不需要分析
  if (debuggerControl.isDebuggerAttached()) {
    // The debugger can create false leaks.
    return RETRY;
  }
  //改对象没有造成内存泄露
  if (gone(reference)) {
    return DONE;
  }
  //手动调用GC
  gcTrigger.runGc();
  //再次 清除set集合中 已经到达引用队列中的弱引用
  removeWeaklyReachableReferences();
  //如果此时引用集合set中还包含改对象,那么它就是个内存泄露的对象
  if (!gone(reference)) {
    long startDumpHeap = System.nanoTime();
    long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);
   //demp出一个 .hprof文件
    File heapDumpFile = heapDumper.dumpHeap();
    if (heapDumpFile == RETRY_LATER) {
      // Could not dump the heap.
      return RETRY;
    }
    long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);
   
    HeapDump heapDump = heapDumpBuilder.heapDumpFile(heapDumpFile).referenceKey(reference.key)
        .referenceName(reference.name)
        .watchDurationMs(watchDurationMs)
        .gcDurationMs(gcDurationMs)
        .heapDumpDurationMs(heapDumpDurationMs)
        .build();
    //分析内存泄露
    heapdumpListener.analyze(heapDump);
  }
  return DONE;
}

总结一下前面的代码:

  • 创建一个RefWatcher并启动一个ActivityRefWatcher
  • 通过ActivityLifecycleCallbacks接口,监听activity的回调,在onDestory中去将activity对象放入观察引用中去观察
  • 先清除引用队列中的弱引用,接着检查对象是否到达引用队列,然后手动执行GC,如果GC完后还有未被回收的对象,调用analyze方法分析内存泄露
public interface Listener {
   Listener NONE = new Listener() {
     @Override public void analyze(HeapDump heapDump) {
     }
   };

   void analyze(HeapDump heapDump);
 }
 
 @Override public void analyze(@NonNull HeapDump heapDump) {
   checkNotNull(heapDump, "heapDump");
   HeapAnalyzerService.runAnalysis(context, heapDump, listenerServiceClass);
 }

analyze是Listener接口中的一个方法,它的实现类是在ServiceHeapDumpListener中。最后调用了HeapAnalyzerService.runAnalysis方法。

public static void runAnalysis(Context context, HeapDump heapDump,
     Class listenerServiceClass) {
   setEnabledBlocking(context, HeapAnalyzerService.class, true);
   setEnabledBlocking(context, listenerServiceClass, true);
   Intent intent = new Intent(context, HeapAnalyzerService.class);
   intent.putExtra(LISTENER_CLASS_EXTRA, listenerServiceClass.getName());
   intent.putExtra(HEAPDUMP_EXTRA, heapDump);
   ContextCompat.startForegroundService(context, intent);
 }

HeapAnalyzerService 继承自 ForegroundService , ForegroundService 继承自 IntentService,runAnalysis方法中就是开启了一个前台的IntentService。最后会执行IntentService的onHandleIntent方法,这里面又执行了抽象方法onHandleIntentInForeground,这个方法在HeapAnalyzerService类中实现。

@Override protected void onHandleIntentInForeground(@Nullable Intent intent) {
  if (intent == null) {
    CanaryLog.d("HeapAnalyzerService received a null intent, ignoring.");
    return;
  }
  String listenerClassName = intent.getStringExtra(LISTENER_CLASS_EXTRA);
  HeapDump heapDump = (HeapDump) intent.getSerializableExtra(HEAPDUMP_EXTRA);

  HeapAnalyzer heapAnalyzer =
      new HeapAnalyzer(heapDump.excludedRefs, this, heapDump.reachabilityInspectorClasses);

  AnalysisResult result = heapAnalyzer.checkForLeak(heapDump.heapDumpFile, heapDump.referenceKey,
      heapDump.computeRetainedHeapSize);
  AbstractAnalysisResultService.sendResultToListener(this, listenerClassName, heapDump, result);
}

从intent中拿到className和HeapDump,然后通过HeapAnalyzer这个类的checkForLeak方法进行分析。最后通过sendResultToListener方法返回。

public @NonNull AnalysisResult checkForLeak(@NonNull File heapDumpFile,
    @NonNull String referenceKey,
    boolean computeRetainedSize) {
  long analysisStartNanoTime = System.nanoTime();

  if (!heapDumpFile.exists()) {
    Exception exception = new IllegalArgumentException("File does not exist: " + heapDumpFile);
    return failure(exception, since(analysisStartNanoTime));
  }

  try {
    listener.onProgressUpdate(READING_HEAP_DUMP_FILE);
    //将heap文件封装成MemoryMappedFileBuffer
    HprofBuffer buffer = new MemoryMappedFileBuffer(heapDumpFile);
    //创建hprof解析器,解析hprof文件
    HprofParser parser = new HprofParser(buffer);
    listener.onProgressUpdate(PARSING_HEAP_DUMP);
    //解析生成快照
    Snapshot snapshot = parser.parse();
    listener.onProgressUpdate(DEDUPLICATING_GC_ROOTS);
    //去除重复的内容
    deduplicateGcRoots(snapshot);
    listener.onProgressUpdate(FINDING_LEAKING_REF);
    //找到泄露对象
    Instance leakingRef = findLeakingReference(referenceKey, snapshot);

    // False alarm, weak reference was cleared in between key check and heap dump.
    if (leakingRef == null) {
      String className = leakingRef.getClassObj().getClassName();
      return noLeak(className, since(analysisStartNanoTime));
    }
    //找到泄露对象的最短路径
    return findLeakTrace(analysisStartNanoTime, snapshot, leakingRef, computeRetainedSize);
  } catch (Throwable e) {
    return failure(e, since(analysisStartNanoTime));
  }
}

checkForLeak方法就是LeakCanary中的核心方法了,这里面用到了Square的另一个开源库haha库,地址 https://github.com/square/haha

  • 通过HprofParser类将hprof转换为Snapshot内存快照。Snapshot中包含所有对象引用的路径,就能查找到内存泄露的路径了
  • 优化GCRoot 通过deduplicateGcRoots方法删除重复的路径
  • findLeakingReference找出泄露的对象
  • findLeakTrace方法找出泄露对象的最短路径

findLeakingReference方法

private Instance findLeakingReference(String key, Snapshot snapshot) {
  ClassObj refClass = snapshot.findClass(KeyedWeakReference.class.getName());
  if (refClass == null) {
    throw new IllegalStateException(
        "Could not find the " + KeyedWeakReference.class.getName() + " class in the heap dump.");
  }
  List keysFound = new ArrayList();
  for (Instance instance : refClass.getInstancesList()) {
    List values = classInstanceValues(instance);
    Object keyFieldValue = fieldValue(values, "key");
    if (keyFieldValue == null) {
      keysFound.add(null);
      continue;
    }
    String keyCandidate = asString(keyFieldValue);
    if (keyCandidate.equals(key)) {
      return fieldValue(values, "referent");
    }
    keysFound.add(keyCandidate);
  }
  throw new IllegalStateException(
      "Could not find weak reference with key " + key + " in " + keysFound);
}

  • 在内存快照Snapshot中找到第一个弱引用KeyedWeakReference,这就是内存泄露的对象。
  • 遍历这个对象的所有的实例
  • 如果找到的key值和最开始保存的key值一样,那么这个对象就是内存泄露的对象

findLeakTrace方法

private AnalysisResult findLeakTrace(long analysisStartNanoTime, Snapshot snapshot,
      Instance leakingRef, boolean computeRetainedSize) {

    listener.onProgressUpdate(FINDING_SHORTEST_PATH);
    ShortestPathFinder pathFinder = new ShortestPathFinder(excludedRefs);
    ShortestPathFinder.Result result = pathFinder.findPath(snapshot, leakingRef);

    String className = leakingRef.getClassObj().getClassName();

    // False alarm, no strong reference path to GC Roots.
    if (result.leakingNode == null) {
      return noLeak(className, since(analysisStartNanoTime));
    }

    listener.onProgressUpdate(BUILDING_LEAK_TRACE);
    LeakTrace leakTrace = buildLeakTrace(result.leakingNode);

    long retainedSize;
    if (computeRetainedSize) {

      listener.onProgressUpdate(COMPUTING_DOMINATORS);
      // Side effect: computes retained size.
      snapshot.computeDominators();

      Instance leakingInstance = result.leakingNode.instance;

      retainedSize = leakingInstance.getTotalRetainedSize();

      // TODO: check O sources and see what happened to android.graphics.Bitmap.mBuffer
      if (SDK_INT <= N_MR1) {
        listener.onProgressUpdate(COMPUTING_BITMAP_SIZE);
        retainedSize += computeIgnoredBitmapRetainedSize(snapshot, leakingInstance);
      }
    } else {
      retainedSize = AnalysisResult.RETAINED_HEAP_SKIPPED;
    }

    return leakDetected(result.excludingKnownLeaks, className, leakTrace, retainedSize,
        since(analysisStartNanoTime));
  }

通过findPath方法,GCroot开始往下寻找
LeakTrace就是内存泄露的调用栈
getTotalRetainedSize()方法,计算内存泄露的内存空间大小
OK Activity的监控流程就看完啦,下面看一下Fragment的。其实跟Activity差不多。从install开始

public static void install(Context context, RefWatcher refWatcher) {
   List fragmentRefWatchers = new ArrayList();
 // 如果大于Anroid 26,需要增加AndroidOFragmentRefWatcher
   if (SDK_INT >= O) {
     fragmentRefWatchers.add(new AndroidOFragmentRefWatcher(refWatcher));
   }
   // 通过反射添加SupportFragmentRefWatcher
   try {
     Class fragmentRefWatcherClass = Class.forName(SUPPORT_FRAGMENT_REF_WATCHER_CLASS_NAME);
     Constructor constructor =
         fragmentRefWatcherClass.getDeclaredConstructor(RefWatcher.class);
     FragmentRefWatcher supportFragmentRefWatcher =
         (FragmentRefWatcher) constructor.newInstance(refWatcher);
     fragmentRefWatchers.add(supportFragmentRefWatcher);
   } catch (Exception ignored) {
   }

   if (fragmentRefWatchers.size() == 0) {
     return;
   }

   Helper helper = new Helper(fragmentRefWatchers);

   Application application = (Application) context.getApplicationContext();
   application.registerActivityLifecycleCallbacks(helper.activityLifecycleCallbacks);
 }

通过反射找到SupportFragmentRefWatcher,它类需要在build.gradle中添加 debugImplementation 'com.squareup.leakcanary:leakcanary-support-fragment:1.6.3'加入引用。

最后注册ActivityLifecycleCallbacks,来监听activity的回调

private final Application.ActivityLifecycleCallbacks activityLifecycleCallbacks =
       new ActivityLifecycleCallbacksAdapter() {
         @Override public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
           for (FragmentRefWatcher watcher : fragmentRefWatchers) {
             watcher.watchFragments(activity);
           }
         }
       };

可以看到这里监听的是activity的onActivityCreated这个生命周期函数,然后把当前的activity的对象传入FragmentRefWatcher中,执行接口watchFragments。SupportFragmentRefWatcher和AndroidOFragmentRefWatcher是FragmentRefWatcher的实现类。最终会回调实现类的watchFragments方法

@Override public void watchFragments(Activity activity) {
    FragmentManager fragmentManager = activity.getFragmentManager();
    fragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true);
  }

通过Activity找到FragmentManager,然后注册系统的Fragment的生命周期回调监听

private final FragmentManager.FragmentLifecycleCallbacks fragmentLifecycleCallbacks =
      new FragmentManager.FragmentLifecycleCallbacks() {

        @Override public void onFragmentViewDestroyed(FragmentManager fm, Fragment fragment) {
          View view = fragment.getView();
          if (view != null) {
            refWatcher.watch(view);
          }
        }
        @Override
        public void onFragmentDestroyed(FragmentManager fm, Fragment fragment) {
          refWatcher.watch(fragment);
        }
      };

Fragment的回调主要监听了onFragmentViewDestroyed和onFragmentDestroyed两个回调方法。最终都会调用RefWatcher中的watch方法,这里面跟前面activity中是一样的啦。