HQL练习某视频网站的常规TopN指标分析
点击关注上方“
知了小巷
”,
设为“置顶或星标”,第一时间送达干货。
某视频网站的TopN指标需求
1.统计视频观看数Top10
2.统计视频类别热度Top10
3.统计视频观看数Top20所属类别
4.统计视频观看数Top50所关联视频的所属类别Rank排名
5.统计每个类别中的视频热度Top10
6.统计每个类别中视频流量Top10
7.统计上传视频最多的用户Top10以及他们上传的视频
8.统计每个类别视频观看数Top10
指标分析所涉及的核心数据结构
1.视频表
字段 | 备注 | 详细描述 |
video_id | 视频唯一id | 11位字符串 |
uploader | 视频上传者 | 上传视频的用户名String |
age | 视频年龄 | 视频在平台上的整数天 |
category | 视频类别 | 上传视频指定的视频分类 |
length | 视频长度 | 整形数字标识的视频长度 |
views | 观看次数 | 视频被浏览的次数 |
rate | 视频评分 | 满分5分 |
ratings | 流量 | 视频的流量,整型数字 |
coments | 评论数 | 一个视频的整数评论数 |
related_id | 相关视频id | 相关视频的id,最多20个 |
2.用户表
字段 | 备注 | 字段类型 |
uploader | 上传者用户名 | string |
videos | 上传视频数 | int |
friends | 朋友数量 | int |
建表和数据准备
创建表(load原始数据)
ods_video_ori
ods_video_user_ori
创建表(默认TEXTFILE转到ORC格式)
ods_video_orc
ods_video_user_orc
ods_video_ori
create table ods_video_ori ( video_id string, uploader string, age int, category array, length int, views int, rate float, ratings int, comments int, related_id array ) row format delimited fields terminated by "\t" collection items terminated by "&" stored as textfile;
ods_video_user_ori
create table ods_video_user_ori ( uploader string, videos int, friends int ) row format delimited fields terminated by "\t" stored as textfile;
然后把原始数据插入到ORC表中
ods_video_orc
create table ods_video_orc ( video_id string, uploader string, age int, category array, length int, views int, rate float, ratings int, comments int, related_id array ) row format delimited fields terminated by "\t" collection items terminated by "&" stored as orc;
ods_video_user_orc
create table ods_video_user_orc ( uploader string, videos int, friends int ) row format delimited fields terminated by "\t" stored as orc;
导入数据
ods_video_ori(一个文件夹下多个文件)
hive> load data local inpath "/Users/xxx/Development/logs/video/" into table ods_video_ori; Loading data to table default.ods_video_ori OK
hive> select * from ods_video_ori limit 5; OK LKh7zAJ4nwo TheReceptionist 653 ["Entertainment"] 424 13021 4.34 1305 744 ["DjdA-5oKYFQ"] 7D0Mf4Kn4Xk periurban 583 ["Music"] 201 6508 4.19 687 312 ["e2k0h6tPvGc"] n1cEq1C8oqQ Pipistrello 525 ["Comedy"] 125 1687 4.01 363 141 ["eprHhmurMHg"] OHkEzL4Unck ichannel 638 ["Comedy"] 299 8043 4.4 518 371 ["eyUSTmEUQRg"] -boOvAGNKUc mrpitifulband 639 ["Music"] 287 7548 4.48 606 386 ["fmUwUURgsX0"] Time taken: 0.293 seconds, Fetched: 5 row(s)
ods_video_user_ori
hive> load data local inpath "/Users/xxx/Development/logs/user.txt" into table ods_video_user_ori;
hive> select * from ods_video_user_ori limit 5; OK barelypolitical 151 5106 bonk65 89 144 camelcars 26 674 cubskickass34 13 126 boydism08 32 50 Time taken: 2.855 seconds, Fetched: 5 row(s)
向ORC表插入数据
ods_video_orc insert into table ods_video_orc select * from ods_video_ori;
ods_video_user_orc insert into table ods_video_user_orc select * from ods_video_user_ori;
业务分析
统计视频观看数Top10
思路:使用order by按照views字段做一个全局排序即可,同时我们设置只显示前10条。
【全局排序】
最终sql:
select video_id, uploader, age, category, length, views, rate, ratings, comments from ods_video_orc order by views desc limit 10;
需要注意内存不够的话会报错:
Ended Job = job_local1559464187_0005 with errors Error during job, obtaining debugging information... FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask
统计视频类别热度Top10
思路:某类别下的视频越多则热度越高
1.即统计每个类别有多少个视频,显示出包含视频最多的前10个类别。
2.我们需要按照类别group by聚合,然后count组内的video_id个数即可。
3.因为当前表结构为:一个视频对应一个或多个类别。所以如果要group by类别,需要先将类别进行列转行(展开),然后再进行count即可。
4.最后按照热度排序,显示前10条。
【lateral view explode的使用】
最终sql:
select category_name as category, count(t1.video_id) as hot from ( select video_id, category_name from ods_video_orc lateral view explode(category) t_catetory as category_name ) t1 group by t1.category_name order by hot desc limit 10;
... MapReduce Jobs Launched: Stage-Stage-1: HDFS Read: 13812458 HDFS Write: 0 SUCCESS Stage-Stage-2: HDFS Read: 13812458 HDFS Write: 0 SUCCESS Total MapReduce CPU Time Spent: 0 msec OK Music 179049 Entertainment 127674 Comedy 87818 Film 73293 Animation 73293 Sports 67329 Games 59817 Gadgets 59817 Blogs 48890 People 48890 ...
统计出视频观看数最高的20个视频的所属类别以及类别包含Top20视频的个数
思路:
1.先找到观看数最高的20个视频所属条目的所有信息,降序排列
2.把这20条信息中的category分裂出来(列转行)
3.最后查询视频分类名称和该分类下有多少个Top20的视频
最终sql:
select category_name as category, count(t2.video_id) as hot_with_views from ( select video_id, category_name from ( select * from ods_video_orc order by views desc limit 20 ) t1 lateral view explode(category) t_catetory as category_name ) t2 group by category_name order by hot_with_views desc;
... MapReduce Jobs Launched: Stage-Stage-1: HDFS Read: 30471366 HDFS Write: 0 SUCCESS Stage-Stage-2: HDFS Read: 30471366 HDFS Write: 0 SUCCESS Stage-Stage-3: HDFS Read: 30471366 HDFS Write: 0 SUCCESS Total MapReduce CPU Time Spent: 0 msec OK Entertainment 6 Comedy 6 Music 5 People 2 Blogs 2 UNA 1 ...
统计视频观看数Top50所关联视频的所属类别排序
思路:
1.查询出观看数最多的前50个视频的所有信息(当然包含了每个视频对应的关联视频),记为临时表t1
t1:观看数前50的视频
select * from ods_video_orc order by views desc limit 50;
2.将找到的50条视频信息的相关视频related_id列转行,记为临时表t2
t2:将相关视频的id进行列转换操作
select explode(related_id) as videoId from t1;
3.将相关视频的id和ods_video_orc表进行inner join操作
t5:得到两列数据,一列是category,一列是之前查询出来的相关视频id
( select distinct(t2.video_id), t3.category from t2 inner join ods_video_orc t3 on t2.videoId = t3.videoId ) t4 lateral view explode(category) t_catetory as category_name;
4.按照视频类别进行分组,统计每组视频个数,然后排行
最终sql:
select category_name as category, count(t5.video_id) as hot from ( select video_id, category_name from ( select distinct(t2.video_id), t3.category from ( select explode(related_id) as video_id from ( select * from ods_video_orc order by views desc limit 50 ) t1 ) t2 inner join ods_video_orc t3 on t2.video_id = t3.video_id ) t4 lateral view explode(category) t_catetory as category_name ) t5 group by category_name order by hot desc;
统计每个类别中的视频热度Top10,以Music为例
思路:
1.要想统计Music类别中的视频热度Top10,需要先找到Music类别,那么就需要将category展开,所以可以创建一张表用于存放category_id展开的数据。
2.向category展开的表中插入数据。
3.统计对应类别(Music)中的视频热度。
最终sql:
创建表类别表:
create table ods_video_category( video_id string, uploader string, age int, category_id string, length int, views int, rate float, ratings int, comments int, related_id array) row format delimited fields terminated by "\t" collection items terminated by "&" stored as orc;
向类别表中插入数据:
insert into table ods_video_category select video_id, uploader, age, category_id, length, views, rate, ratings, comments, related_id from ods_video_orc lateral view explode(category) catetory as category_id;
hive> select count(1) from ods_video_category; OK 1019206
统计Music类别的Top10(也可以统计其他)
select video_id, views from ods_video_category where category_id = "Music" order by views desc limit 10;
统计每个类别中视频流量Top10,以Music为例
思路:
1.创建视频类别展开表(category_id列转行后的表)
2.按照ratings排序即可
最终sql:
select video_id, views, ratings from ods_video_category where category_id = "Music" order by ratings desc limit 10;
统计上传视频最多的用户Top10以及他们上传的观看次数在前20的视频
思路:
1.先找到上传视频最多的10个用户的用户信息
select * from ods_video_user_orc order by videos desc limit 10;
2.通过uploader字段与ods_video_orc表进行join,得到的信息按照views观看次数进行排序即可。
最终sql:
select t2.video_id, t2.views, t2.ratings, t1.videos, t1.friends from ( select * from ods_video_user_orc order by videos desc limit 10 ) t1 join ods_video_orc t2 on t1.uploader = t2.uploader order by views desc limit 20;
统计每个类别视频观看数Top10
思路:
1.先得到category_id展开的表数据
2.子查询按照category_id进行分区,然后分区内排序,并生成递增数字,该递增数字这一列起名为rank列
3.通过子查询产生的临时表,查询rank值小于等于10的数据行即可。
最终sql:
select t1.* from ( select video_id, category_id, views, row_number() over(partition by category_id order by views desc ) rank from ods_video_category ) t1 where rank <= 10;
推荐阅读:
Hive-DML(Data Manipulation Language)数据操作语言
Hive-DDL(Data Definition Language)数据定义
欢迎关注我的公众号“
知了小巷
”,如果喜欢,可以点一下“
在看
”~
谢谢~~