All Possible Full Binary Trees
第18天。
今天的题目是 All Possible Full Binary Trees :
A full binary tree is a binary tree where each node has exactly 0 or 2 children.
Return a list of all possible full binary trees with N
nodes. Each element of the answer is the root node of one possible tree.
Each node
of each tree in the answer must have node.val = 0
.
You may return the final list of trees in any order.
Example 1:
Input: 7 Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]] Explanation:
Note:
-
1 <= N <= 20
这道题就是一个穷举的问题,我们知道完全二叉树的节点个数一定是奇数,所以可以先把 N
为偶数的输入先处理掉,然后就是怎么穷举的问题了。显然,一个完全二叉树的子树一定也是完全二叉树,所以我们可以以 1,3,5...,N-2
的方式穷举出出左子树中节点的个数 i
,已知左子树节点个数,那么右子树节点的个数就为 N-i-1
,我们先把左子树和右子树的可能都算出来,然后就再计算它们两两组合的所有可能即可得到所有节点个数为 N
的完全二叉树的情况。总的来说,就是一个大问题化简成小问题的思路。所以我们可以写出如下代码:
TreeNode *copyTree(TreeNode *root) { if (root == nullptr) return nullptr; TreeNode *res = new TreeNode(0); res->left = copyTree(root->left); res->right = copyTree(root->right); return res; } vector allPossibleFBT(int N) { vector res; if (N % 2 == 0) return res; vector<vector> dp(N+1); dp[1].push_back(new TreeNode(0)); for(int i = 1;i < dp.size();i+=2) { // dp[i]; for(int j = 1;j < i;j+=2) { vector &left = dp[j]; vector &right = dp[(i-j-1)]; for(auto &l: left) { for(auto &r: right) { TreeNode *node = new TreeNode(0); node->left = copyTree(l); node->right = copyTree(r); dp[i].push_back(node); } } } } return dp[N]; }
然后你会发现好像可以用一个数组来存在已经求解出来的结果,如果再一次求,我们可以直接返回了:
vector &allPossibleFBT(int N, vector<vector> &cache) { if (cache[N].size() != 0) return cache[N]; for(int i = 1;i < N;i++) { vector &left = allPossibleFBT(i, cache); vector &right = allPossibleFBT(N - i - 1, cache); for(auto l: left) { for(auto r: right) { TreeNode *node = new TreeNode(0); node->left = l; node->right = r; cache[N].push_back(node); } } } return cache[N]; } vector allPossibleFBT(int N) { vector res; if (N % 2 == 0) return {}; vector<vector> cache(21); cache[1].push_back(new TreeNode(0)); return allPossibleFBT(N, cache); }
如果熟悉动态规划的话,就会发现可以自顶向下的求解方式转成自底向上的求解方式,这里我们就不需要用递归去求解:
vector allPossibleFBT(int N) { vector res; if (N % 2 == 0) return res; vector<vector> dp(N+1); dp[1].push_back(new TreeNode(0)); for(int i = 1;i < dp.size();i+=2) { // dp[i]; for(int j = 1;j left = copyTree(l); node->right = copyTree(r); dp[i].push_back(node); } } } } return dp[N]; }
最后,这份代码在 LeetCode
大概只能超过50%,如果要进一步,只有把 copyTree
去掉,直接赋值。这种方式是可行的,但是感觉只是在刷题时的一种技巧而已:
vector allPossibleFBT(int N) { vector res; if (N % 2 == 0) return res; vector<vector> dp(N+1); dp[1].push_back(new TreeNode(0)); for(int i = 1;i < dp.size();i+=2) { // dp[i]; for(int j = 1;j left = l;//copyTree(l); node->right = r;//copyTree(r); dp[i].push_back(node); } } } } return dp[N]; }