深度学习网络调参技巧

介绍

之前曾经写过一篇文章,讲了一些深度学习训练的技巧,其中包含了部分调参心得:深度学习训练心得 [1]。不过由于一般深度学习实验,相比普通机器学习任务,时间较长,因此调参技巧就显得尤为重要。同时个人实践中,又有一些新的调参心得,因此这里单独写一篇文章,谈一下自己对深度学习调参的理解,大家如果有其他技巧,也欢迎多多交流。

好的实验环境是成功的一半

由于深度学习实验超参众多,代码风格良好的实验环境,可以让你的人工或者自动调参更加省力,有以下几点可能需要注意:

将各个参数的设置部分集中在一起
。如果参数的设置分布在代码的各个地方,那幺修改的过程想必会非常痛苦。
可以输出模型的损失函数值以及训练集和验证集上的准确率。

可以考虑设计一个子程序,可以根据给定的参数,启动训练并监控和周期性保存评估结果。 再由一个主程序,分配参数以及并行启动一系列子程序

画图

画图是一个很好的习惯,一般是训练数据遍历一轮以后,就输出一下训练集和验证集准确率。 同时画到一张图上
。这样训练一段时间以后,如果模型一直没有收敛,那幺就可以停止训练,尝试其他参数了,以节省时间。

如果训练到最后,训练集,测试集准确率都很低,那幺说明模型有可能 欠拟合
。那幺后续调节参数方向,就是增强模型的拟合能力。例如增加网络层数,增加节点数,减少 dropout 值,减少 L2 正则值等等。

如果训练集准确率较高,测试集准确率比较低,那幺模型有可能 过拟合
,这个时候就需要向提高模型泛化能力的方向,调节参数。

从粗到细分阶段调参

实践中,一般先进行初步范围搜索,然后根据好结果出现的地方,再缩小范围进行更精细的搜索。

1. 建议先参考相关论文, 以论文中给出的参数作为初始参数
。至少论文中的参数,是个不差的结果。

2. 如果找不到参考,那幺只能自己尝试了。可以先从比较重要, 对实验结果影响比较大的参数开始
,同时固定其他参数,得到一个差不多的结果以后,在这个结果的基础上,再调其他参数。例如学习率一般就比正则值,dropout 值重要的话,学习率设置的不合适,不仅结果可能变差,模型甚至会无法收敛。

3. 如果实在找不到一组参数,可以让模型收敛。那幺就需要检查, 是不是其他地方出了问题
,例如模型实现,数据等等。可以参考我写的深度学习网络调试技巧 [2]

提高速度

调参只是为了寻找合适的参数,而不是产出最终模型。一般在小数据集上合适的参数,在大数据集上效果也不会太差。 因此可以尝试对数据进行精简
,以提高速度,在有限的时间内可以尝试更多参数。

对训练数据进行采样。例如原来 100W 条数据,先采样成 1W,进行实验看看。
减少训练类别。例如手写数字识别任务,原来是 10 个类别,那幺我们可以先在 2 个类别上训练,看看结果如何。

超参数范围

建议优先在对数尺度上进行超参数搜索。比较典型的是学习率和正则化项,我们可以从诸如 0.001 0.01 0.1 1 10,以 10 为阶数进行尝试。因为他们对训练的影响是相乘的效果。不过有些参数,还是建议在原始尺度上进行搜索,例如 dropout 值: 0.3 0.5 0.7)。

经验参数

这里给出一些参数的经验值,避免大家调参的时候,毫无头绪。
Learning rate:1 0.1 0.01 0.001, 一般从 1 开始尝试。很少见 learning rate 大于 10 的。学习率一般要随着训练进行衰减。衰减系数一般是 0.5。衰减时机,可以是验证集准确率不再上升时,或固定训练多少个周期以后。

不过 更建议使用自适应梯度的办法
,例如 adam,adadelta,rmsprop 等,这些一般使用相关论文提供的默认值即可,可以避免再费劲调节学习率。 对 RNN 来说
,有个经验,如果 RNN 要处理的序列比较长,或者 RNN 层数比较多,那幺 learning rate 一般小一些比较好,否则有可能出现结果不收敛,甚至 Nan 等问题。
网络层数:先从 1 层开始。
每层结点数:16 32 128,超过 1000 的情况比较少见。超过 1W 的从来没有见过。
batch size:128 上下开始。batch size 值增加,的确能提高训练速度。但是有可能收敛结果变差。如果显存大小允许,可以考虑从一个比较大的值开始尝试。因为 batch size 太大,一般不会对结果有太大的影响,而 batch size 太小的话,结果有可能很差。

clip c(梯度裁剪): 限制最大梯度
, 其实是 value = sqrt(w1^2+w2^2….), 如果 value 超过了阈值,就算一个衰减系系数, 让 value 的值等于阈值: 5,10,15

dropout:0.5

L2 正则:1.0,超过 10 的很少见。
词向量 embedding 大小:128,256
正负样本比例:这个是非常忽视,但是在很多分类问题上,又非常重要的参数。很多人往往习惯使用训练数据中默认的正负类别比例,当训练数据非常不平衡的时候,模型很有可能会偏向数目较大的类别,从而影响最终训练结果。除了尝试训练数据默认的正负类别比例之外,建议对数目较小的样本做过采样,例如进行复制。提高他们的比例,看看效果如何,这个对多分类问题同样适用。

在使用 mini-batch 方法进行训练的时候, 尽量让一个 batch 内,各类别的比例平衡
,这个在图像识别等多分类任务上非常重要。

自动调参

人工一直盯着实验,毕竟太累。自动调参当前也有不少研究。下面介绍几种比较实用的办法:

Gird Search.
这个是最常见的。具体说,就是每种参数确定好几个要尝试的值,然后像一个网格一样,把所有参数值的组合遍历一下。优点是实现简单暴力,如果能全部遍历的话,结果比较可靠。缺点是太费时间了,特别像神经网络,一般尝试不了太多的参数组合。

Random Search。
Bengio 在 Random Search for Hyper-Parameter Optimization 中指出,Random Search 比 Gird Search 更有效。实际操作的时候,一般也是先用 Gird Search 的方法,得到所有候选参数,然后每次从中随机选择进行训练。

Bayesian Optimization.
贝叶斯优化,考虑到了不同参数对应的实验结果值,因此更节省时间。和网络搜索相比简直就是老牛和跑车的区别。具体原理可以参考这个论文:Practical Bayesian Optimization of Machine Learning Algorithms ,这里同时推荐两个实现了贝叶斯调参的 Python 库,可以上手即用:
jaberg/hyperopt, 比较简单。
fmfn/BayesianOptimization, 比较复杂,支持并行调参。

总结

1. 合理性检查,确定模型,数据和其他地方没有问题。
2. 训练时跟踪损失函数值,训练集和验证集准确率。
3. 使用 Random Search 来搜索最优超参数,分阶段从粗(较大超参数范围训练较少周期)到细(较小超参数范围训练较长周期)进行搜索。

参考资料:

https://zhuanlan.zhihu.com/p/20767428

https://zhuanlan.zhihu.com/p/20792837

    1. Practical recommendations for gradient-based training of deep architectures by Yoshua Bengio (2012)
    1. Efficient BackProp, by Yann LeCun, Léon Bottou, Genevieve Orr and Klaus-Robert Müller
    1. Neural Networks: Tricks of the Trade, edited by Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller.

原文链接: https://mp.weixin.qq.com/s?__biz=MzU2ODA0NTUyOQ==&mid=2247484029&idx=1&sn=8ca09b63f782d6761950d15356328ef3&chksm=fc92b8cbcbe531dd7c71d90c856ffb97750cb86cb6d3423bfbbc5be63718cf1f3d3912bdb6b4&scene=27#wechat_redirect