关于Go1.14,你一定想知道的性能提升与新特性

Go官方团队将在今年2月份发布1.14版本。相比较于之前的版本升级,Go1.14在性能提升上做了较大改动,还加入了很多新特性,我们一起来看一下Go1.14都给我们带来了哪些惊喜吧!

1.性能提升

先列举几个Go1.14在性能提升上做的改进。

1.1 defer性能“异常”牛逼

异常牛逼是有多牛逼呢?我们可以通过一个简单benchmark看一看。用例如下(defer_test.go):

package main

import (
    "testing"
)

type channel chan int

func NoDefer() {
    ch1 := make(channel, 10)
    close(ch1)
}

func Defer() {
    ch2 := make(channel, 10)
    defer close(ch2)
}

func BenchmarkNoDefer(b *testing.B) {
    for i := 0; i < b.N; i++ {
        NoDefer()
    }
}

func BenchmarkDefer(b *testing.B) {
    for i := 0; i < b.N; i++ {
        Defer()
    }
}
复制代码

我们分别使用Go1.13版本和Go1.14版本进行测试,关于Go多个版本的管理切换,推荐大家使用 gvm ,非常的方便。首先使用Go1.13版本,只需要命令: gvm use go1.13 ;之后运行命令: go test -bench=. -v ,结果如下:

goos: darwin
goarch: amd64
pkg: github.com/GuoZhaoran/myWebSites/data/goProject/defer
BenchmarkNoDefer-4      15759076            74.5 ns/op
BenchmarkDefer-4        11046517           102 ns/op
PASS
ok      github.com/GuoZhaoran/myWebSites/data/goProject/defer   3.526s
复制代码

可以看到,Go1.13版本调用defer关闭channel的性能开销还是蛮大的,op几乎差了30ns。切换到go1.14: gvm use go1.14 ;再次运行命令: go test -bench=. -v ,下面的结果一定会亮瞎了小伙伴的双眼:

goos: darwin
goarch: amd64
pkg: github.com/GuoZhaoran/myWebSites/data/goProject/defer
BenchmarkNoDefer
BenchmarkNoDefer-4      13094874            80.3 ns/op
BenchmarkDefer
BenchmarkDefer-4        13227424            80.4 ns/op
PASS
ok      github.com/GuoZhaoran/myWebSites/data/goProject/defer   2.328s
复制代码

Go1.14版本使用defer关闭channel几乎0开销!

关于这一改进,官方给出的回应是: Go1.14提高了defer的大多数用法的性能,几乎0开销!defer已经可以用于对性能要求很高的场景了。

关于defer,在Go1.13版本已经做了一些的优化,相较于Go1.12,defer大多数用法性能提升了30%。而Go1.14的此次改进更是激动人心!关于Go1.14对defer优化的原理和细节,笔者还没有收集到参考资料,相信很快就会有大神整理出来,大家可以关注一下。关于Go语言defer的设计原理、Go1.13对defer做了哪些改进,推荐给大家下面几篇文章:

1.2 goroutine支持异步抢占

Go语言调度器的性能随着版本迭代表现的越来越优异,我们来了解一下调度器使用的G-M-P模型。先是一些概念:

  • G(Goroutine): goroutine,由关键字go创建
  • M(Machine): 在Go中称为Machine,可以理解为工作线程
  • P(Processor) : 处理器 P 是线程 M 和 Goroutine 之间的中间层(并不是CPU)

M必须持有P才能执行G中的代码,P有自己本地的一个运行队列runq,由可运行的G组成,Go语言调度器的工作原理就是处理器P的队列中选择队列头的goroutine 放到线程 M 上执行,下图展示了 线程 M、处理器 P 和 goroutine 的关系。

每个P维护的G可能是不均衡的,调度器还维护了一个全局G队列,当P执行完本地的G任务后,会尝试从全局队列中获取G任务运行( 需要加锁 ),当P本地队列和全局队列都没有可运行的任务时,会尝试偷取其他P中的G到本地队列运行( 任务窃取 )。

在Go1.1版本中,调度器还不支持抢占式调度,只能依靠 goroutine 主动让出 CPU 资源,存在非常严重的调度问题:

  • 单独的 goroutine 可以一直占用线程运行,不会切换到其他的 goroutine,造成饥饿问题
  • 垃圾回收需要暂停整个程序(Stop-the-world,STW),如果没有抢占可能需要等待几分钟的时间,导致整个程序无法工作

Go1.12中编译器在特定时机插入函数,通过函数调用作为入口触发抢占,实现了协作式的抢占式调度。但是这种需要函数调用主动配合的调度方式存在一些边缘情况,就比如说下面的例子:

package main

import (
    "runtime"
    "time"
)

func main() {
    runtime.GOMAXPROCS(1)
    
    go func() {
        for {
        }
    }()
    
    time.Sleep(time.Millisecond)
    println("OK")
}
复制代码

其中创建一个goroutine并挂起, main goroutine 优先调用了 休眠,此时唯一的 P 会转去执行 for 循环所创建的 goroutine,进而 main goroutine 永远不会再被调度。换一句话说在Go1.14之前,上边的代码永远不会输出OK。这是因为Go1.12实现的协作式的抢占式调度是不会使一个没有主动放弃执行权、且不参与任何函数调用的goroutine被抢占。

Go1.14 通过实现了基于信号的真抢占式调度解决了上述问题,这是一个非常大的改动,Go团队对已有的逻辑进行重构并为 goroutine 增加新的状态和字段来支持抢占。这一改动使得Go语言调度器更加健壮,调度性能更加优越,但是还有一些潜在的问题没有被发现,预计将来会在 STW 和栈扫描之外加入更多的抢占点。

关于调度器和Go语言的G-M-P并发模型,都是非常深入的话题。下边推荐给读者的几篇文章,特别值得学习探索:

1.3 time.Timer定时器性能得到“巨幅”提升

我们先来看一下官方的benchmark数据吧。 数据来源

Changes in the time package benchmarks:

name                      old time/op  new time/op  delta
AfterFunc-12              1.57ms ± 1%  0.07ms ± 1%  -95.42%  (p=0.000 n=10+8)
After-12                  1.63ms ± 3%  0.11ms ± 1%  -93.54%  (p=0.000 n=9+10)
Stop-12                   78.3µs ± 3%  73.6µs ± 3%   -6.01%  (p=0.000 n=9+10)
SimultaneousAfterFunc-12   138µs ± 1%   111µs ± 1%  -19.57%  (p=0.000 n=10+9)
StartStop-12              28.7µs ± 1%  31.5µs ± 5%   +9.64%  (p=0.000 n=10+7)
Reset-12                  6.78µs ± 1%  4.24µs ± 7%  -37.45%  (p=0.000 n=9+10)
Sleep-12                   183µs ± 1%   125µs ± 1%  -31.67%  (p=0.000 n=10+9)
Ticker-12                 5.40ms ± 2%  0.03ms ± 1%  -99.43%  (p=0.000 n=10+10)
Sub-12                     114ns ± 1%   113ns ± 3%     ~     (p=0.069 n=9+10)
Now-12                    37.2ns ± 1%  36.8ns ± 3%     ~     (p=0.287 n=8+8)
NowUnixNano-12            38.1ns ± 2%  37.4ns ± 3%   -1.87%  (p=0.020 n=10+9)
Format-12                  252ns ± 2%   195ns ± 3%  -22.61%  (p=0.000 n=9+10)
FormatNow-12               234ns ± 1%   177ns ± 2%  -24.34%  (p=0.000 n=10+10)
MarshalJSON-12             320ns ± 2%   250ns ± 0%  -21.94%  (p=0.000 n=8+8)
MarshalText-12             320ns ± 2%   245ns ± 2%  -23.30%  (p=0.000 n=9+10)
Parse-12                   206ns ± 2%   208ns ± 4%     ~     (p=0.084 n=10+10)
ParseDuration-12          89.1ns ± 1%  86.6ns ± 3%   -2.78%  (p=0.000 n=10+10)
Hour-12                   4.43ns ± 2%  4.46ns ± 1%     ~     (p=0.324 n=10+8)
Second-12                 4.47ns ± 1%  4.40ns ± 3%     ~     (p=0.145 n=9+10)
Year-12                   14.6ns ± 1%  14.7ns ± 2%     ~     (p=0.112 n=9+9)
Day-12                    20.1ns ± 3%  20.2ns ± 1%     ~     (p=0.404 n=10+9)
复制代码

从基准测试的结果可以看出AfterFunc、After、Ticker这些time包的性能都得到了“巨副”提升。

在Go1.10之前的版本中,Go语言使用一个全局的四叉堆的小顶堆维护所有的timer。

在小顶堆中,父节点比其他四个节点都小,子节点之前没有大小关系。