二叉树的遍历和查找

前序遍历

若二叉树非空,则执行以下操作:

  1. 访问根结点;
  2. 先序遍历左子树;
  3. 先序遍历右子树

中序遍历

若二叉树非空,则执行以下操作:

  1. 中序遍历左子树;
  2. 访问根结点;
  3. 中序遍历右子树。

后序遍历

若二叉树非空,则执行以下操作:

  1. 后序遍历左子树;
  2. 后序遍历右子树;
  3. 访问根结点

实例说明

graph TD
3–>1
3–>5
1–>2
5–>4
5–>6
对于上面的二叉树而言,

  1. 前序遍历结果: 3 1 2 5 4 6
  2. 中序遍历结果: 1 2 3 4 5 6
  3. 后序遍历结果: 2 1 4 6 5 3

树的遍历代码实现

定义一个树结构

@ToString
class TreeNode {
  int val;
  TreeNode left;
  TreeNode right;

  TreeNode(int x) {
    val = x;
  }
}

定义一个遍历方式的枚举

/**
 * 遍历的方向.
 */
enum Direct {
  /**
   * 中序
   */
  middle,
  /**
   * 前序
   */
  before,
  /**
   * 后序
   */
  after;
}

实现代码

/**
   * 遍历.
   */
  public void print(Direct direct) {
    StringBuffer stringBuffer = new StringBuffer();
    print(stringBuffer, this, direct, "ROOT:");
    System.out.println(stringBuffer.toString());
  }

  private void print(StringBuffer stringBuffer, TreeNode treeNode, Direct direct, String node) {
    if (treeNode != null) {

      if (direct == Direct.before) {
        stringBuffer.append(node + treeNode.val + "\n");
        print(stringBuffer, treeNode.left, direct, "L:");
        print(stringBuffer, treeNode.right, direct, "R:");
      } else if (direct == Direct.middle) {
        print(stringBuffer, treeNode.left, direct, "L:");
        stringBuffer.append(node + treeNode.val + "\n");
        print(stringBuffer, treeNode.right, direct, "R:");
      } else {
        print(stringBuffer, treeNode.left, direct, "L:");
        print(stringBuffer, treeNode.right, direct, "R:");
        stringBuffer.append(node + treeNode.val + "\n");
      }
    }
  }

二叉查询树实现了二分查找法

时间复杂度是Olog(n)到O(n),也就是说它最好的情况是Olog(n),当然运气不好,也就是你查询的是叶子节点,那就是O(n)了。

/*
   * 二分查找,最优时间复杂度OLog(n).
   */
  private TreeNode search(TreeNode x, int key) {
    if (x == null)
      return x;

    int cmp = key - x.val;
    if (cmp  0)
      return search(x.right, key);
    else
      return x;
  }

  public TreeNode search(int key) {
    return search(this, key);
  }
}

对于树的知识还有很多,本文章主要介绍树的遍历和查找!