近期有哪些值得读的推荐系统论文?来看看这份私人阅读清单

在碎片 化阅读 充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。 在这个栏目里,你会 快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。

本期 「本周值得读 」关 注的 推荐系统 」领域 我们筛选了 10 篇来自 SIGIR 2020、KDD 2020 等顶会的最新论文 ,下面就一起来看看读 过这些 论文 推荐人 推荐理由 个人评价 吧!

本期推荐人: 纪厚业,北京邮电大学 DMGroup 在读博士生,其研究方向包括异质图分析,图表示学习(图神经网络)和推荐系统。目前已经在 WWW,EMNLP 和 PRICAI 上发表多篇相关论文。

#SIGIR 2020

@纪厚业

本文是武汉大学和阿里巴巴发表于 SIGIR 2020 的工作。在实际的推荐场景下,商品通常可以划分为不同的领域,例如图书和电影。虽然它们属于不同的领域,但是可以较为一致的反映用户的偏好。

本文对用户和商品在不同场景下的特点进行了建模并提出一种名为 CATN 的模型。 CATN 通过注意力机制学习不同领域之间的协同性。 同时,作者还引入了评论信息来进一步强化用户的表示。 最后,在评分预测实验上,作者提出的 CATN 可以大幅度超越 SOTA 的算法。

* 论文标题: CATN: Cross-Domain Recommendation for Cold-Start Users via Aspect Transfer Network

* 论文链接:http://www.paperweekly.site/papers/3748

* 源码链接:https://github.com/AkiraZC/CATN

# KDD 2020

@ 纪厚业

本文是阿里巴巴发表于 KDD 2020 的工作。工业场景下通常存在多种不同的形式辅助信息,这实际上可以认为是多视图信息。通过充分挖掘多方面的信息,通常可以带来一些效果的提升。

但是,本文作者 diss 之前的工作没有深入考虑多视图学习的两个基础性问题:1)如何去除多视图带来的冗余信息并且单个向量无法充分描述所有信息;2)各个视图来自不同的源,其分布的差异也较大。为此,作者提出了一种多视图对齐的方法来解决上述问题。

具体的说, 作者提出了名为 M2GRL 框架来学习多视图下的节点表示。 多任务学习可以较好地融合单个视图的内部信息和多个视图的交叉信息。最后,作者通过大量的实验验证了 M2GRL 的有效性。

* 论文标题: M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems

* 论文链接:http://www.paperweekly.site/papers/3747

* 源码链接:https://github.com/99731/M2GRL

# SIGIR 2020

@纪厚业

本文是阿里和蚂蚁金服发表在 SIGIR 2020 上的论文。为了更好地刻画多种用户行为并融合知识图谱进行高效推荐, 作者设计了一种 Adaptive Target-Behavior Relational Graph network (ATBRG) 来自适应地抽取结构信息和知识信息。

同时,作者还提出了一种 graph prune technique 来构建特定目标的关系图。此外,作者联合了 relation-aware extractor layer 和 representation activation layer 来进行端到端的训练和学习。最后,作者将算法部署到淘宝 APP 上并取得了 5.1% 的 CTR 提升。

* 论文标题: ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation

* 论文链接:https://www.paperweekly.site/papers/3811

# SIGIR 2020

@纪厚业

本文是京东发表于 SIGIR 2020 的工作, 文章为京东在推荐系统领域的实践经验总结 ,介绍了自 2019 年就部署在京东上的搜索推荐系统框架 DPSR。 本文是相关从业人员的很好的参考资料。作者首先介绍了推荐系统的两个问题:如何召回一些相关性的商品以及如何根据用户的偏好进行个性化推荐。 

整个模型并不复杂,重要的是作者介绍了其设计经验其整个业务的流程框架图。只要把流程打通,进一步的做模型优化也会比较容易。同时,作者还对模型的 CPU 和 GPU 资源消耗进行了介绍。在算法复杂度和资源消耗如何折中也是一个工业落地需要考虑的问题。

* 论文标题: Towards Personalized and Semantic Retrieval: An End-to-End Solution for E-commerce Search via Embedding Learning

* 论文链接:https://www.paperweekly.site/papers/3810

# SIGIR 2020

@纪厚业

在实际的推荐系统中,候选商品的生成一个非常大的挑战。我们需要从海量(十亿级)的商品中来选择几百个用户购买意图较强的商品。这也是工业界中的召回过程。目前,工业界的解决方案主要是通过商品相似性 item2item 来进行商品召回,但是其并没有考虑单个用户的偏好及商品的属性。 

本文针对上述问题,提出了一种 attribute-aware collaborative filtering (A2CF) 方法在保证准确度的前提下实现了可解释性的推荐。 通过对用户商品属性进行分析,可以在属性层面反映他们的偏好。最后,作者在大量数据上验证了算法的有效性。

* 论文标题: Try This Instead: Personalized and Interpretable Substitute Recommendation

* 论文链接:http://www.paperweekly.site/papers/3762

* 源码链接: https://rockytchen@bitbucket.org/rockytchen/a2cf-sigir20.git

# SIGIR 2020

@纪厚业

本文发表在 SIGIR 2020 上。现在很多推荐算法都尝试引入异质知识,如知识图谱,来提升推荐系统的效果。但是,这些工作还是没有很好的考虑多方面的商品特性,进而无法精确的学习商品表示。

针对上述问题, 本文提出一种基于图神经网络的推荐网络 multi-view item network (MVIN) 的算法 ,同时从用户角度和实体角度来学习多个视角下的商品表示,进而进行商品推荐。 

作者在 3 个真实数据集 MovieLens-1M (ML-1M),LFM-1b 2015 (LFM-1b) 和 Amazon-Book (AZ-book) 上验证了算法的有效。近些年,将知识图谱与推荐系统结合的文章越来越多,引入外部知识很容易能够从数据层面上来提升整个算法的效果。

* 论文标题: MVIN: Learning Multiview Items for Recommendation

* 论文链接:https://www.paperweekly.site/papers/3807

* 源码链接:https://github.com/johnnyjana730/MVIN

#arXiv 2020

@纪厚业

本文来自罗格斯大学和清华大学,这是近期读到的非常惊艳的一篇推荐论文。以往的推荐算法最常见的策略就是学习用户和商品的表示,然后利用相似度函数来进行推荐。 本文受最近的符号推理启发,将逻辑推理与表示学习结合起来,利用AND,OR,NOT 来辅助学习节点表示。 在多个数据集上大幅度超越现有算法。

神经网络被诟病的一点就是推理能力不行,本文在推荐上做出了很好的尝试和验证,感觉算是挖了值得填的大坑。

* 论文标题: Neural Collaborative Reasoning

* 论文链接:http://www.paperweekly.site/papers/3802

# SIGIR 2020

@纪厚业

本文是中国人民大学和阿里巴巴发表于 SIGIR 2020 的工作。现有的时序推荐算法通常基于最大似然进行训练,并能够针对用户偏好来生成或选择一些商品。但是,之前所有的工作通常只是联合的进行推荐,无法有效的分析是哪些因素影响了最终的推荐结果。

为此, 作者提出了一种 Multi-Factor Generative Adversarial Network (MFGAN) 的算法来显式地刻画多种推荐因子。 作者借鉴了 GAN 的思想,一个生成器来生成可能的推荐商品,多个判别器来评估不同因子对推荐的影响。最后,作者做了大量的实验来验证本文所提出算法的有效性。

* 论文标题: Sequential Recommendation with Self-Attentive Multi-Adversarial Network

* 论文链接:http://www.paperweekly.site/papers/3752

#SIGIR 2020

@纪厚业

本文是阿姆斯特丹大学和国防科技大学发表于 SIGIR 2020 的工作。对话和提问式的推荐系统已经成为近些年的研究热点。 本文提出了一种基于提问式的推荐算法,Qrec 能够交替地自动选择问题和构建答案。

本文是基于矩阵分解框架, 并没有使用现在非常火的深度学习技术,通过问答结果来交替的更新用户及商品的表示。 同时,可以推断出用户想法进而生成一系列问题。 大量的实验结果验证了本文算法的有效性。 本文没有盲目跟风使用深度学习技术,在现在的推 荐系统论文中感觉独树一帜。

* 论文标题: Towards Question-based Recommender Systems

* 论文链接:http://www.paperweekly.site/papers/3803

# SIGIR 2020

@纪厚业

本文是昆士兰大学和格里菲斯大学发表于 SIGIR 2020 的工作。近些年,如何更好地构建鲁棒的机器学习系统是非常热门的研究方向,尤其是在很多对抗攻击算法不断发展的情况下。在实际工业场景下,推荐系统所能拿到的数据通常会有各种各种的噪音等问题并且可能遭受到攻击。

本文针对实际数据的质量问题,研究了如何在低质量数据上构建更加稳定的推荐系统。 同时,作者希望能够对一些欺诈也进行检测。通过上述两方面的协同努力,作者同时实现了欺诈检测和高质量的推荐。最后,大量的实验验证了本文算法的有效性。

* 论文标题: GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection

* 论文链接:http://www.paperweekly.site/papers/3749

更多阅读

:mag:

现在,在 「知乎」 也能找到我们了

进入知乎首页搜索 「PaperWeekly」

点击 「关注」 订阅我们的专栏吧

关于PaperWeekly

PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击 「交流群」 ,小助手将把你带入 PaperWeekly 的交流群里。