使用feature Importance进行特征选择
2015 年 9 月 3 日
在前一篇机器学习之特征选择的文章中讲到了树模型中GBDT也可用来作为基模型进行特征选择。今天在此基础上进行拓展,介绍除决策树外用的比较多的XGBoost、LightGBM。
DecisionTree
决策树的feature_importances_属性,返回的重要性是按照决策树种被用来分割后带来的增益(gain)总和进行返回。
The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance.
关于信息增益(Gain)相关介绍可以决策树简介。
GradientBoosting和ExtraTrees与DecisionTree类似。
XGBoost
get_score(fmap='', importance_type='weight') Get feature importance of each feature. Importance type can be defined as: ‘weight’: the number of times a feature is used to split the data across all trees. ‘gain’: the average gain across all splits the feature is used in. ‘cover’: the average coverage across all splits the feature is used in. ‘total_gain’: the total gain across all splits the feature is used in. ‘total_cover’: the total coverage across all splits the feature is used in.
其中:
- weight:该特征被选为分裂特征的次数。
- gain:该特征的带来平均增益(有多棵树)。在tree中用到时的gain之和/在tree中用到的次数计数。gain = total_gain / weight
- cover:该特征对每棵树的覆盖率。
- total_gain:在所有树中,某特征在每次分裂节点时带来的总增益
- total_cover:在所有树中,某特征在每次分裂节点时处理(覆盖)的所有样例的数量。
参考链接: https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster.get_score
LightGBM
feature_importance(importance_type='split', iteration=None) Get feature importances. importance_type (string, optional (default="split")) – How the importance is calculated. If “split”, result contains numbers of times the feature is used in a model. If “gain”, result contains total gains of splits which use the feature. iteration (int or None, optional (default=None)) – Limit number of iterations in the feature importance calculation. If None, if the best iteration exists, it is used; otherwise, all trees are used. If <= 0, all trees are used (no limits).
其中:
- split就是特征在所有决策树中被用来分割的总次数。
- gain就是特征在所有决策树种被用来分割后带来的增益(gain)总和