用Spark解决一些经典MapReduce问题-演道网
摘要
Spark是一个Apache项目,它被标榜为“快如闪电的集群计算”。它拥有一个繁荣的开源社区,并且是目前最活跃的Apache项目。Spark提供了一个更快、更通用的数据处理平台。和Hadoop相比,Spark可以让你的程序在内存中运行时速度提升100倍,或者在磁盘上运行时速度提升10倍。同时spark也让传统的map reduce job开发变得更加简单快捷。本文将简单介绍几个经典hadoop的mr按理用spark实现,来让大家熟悉spark的开发。
最大值最小值
求最大值最小值一直是Hadoop的经典案例,我们用Spark来实现一下,借此感受一下spark中mr的思想和实现方式。话不多说直接上code:
@Test
def testMaxMin: Unit = {
val sconf = new SparkConf().setAppName(“test”)
val sc = new SparkContext(sconf)
//初始化测试数据
val data = sc.parallelize(Array(10,7,3,4,5,6,7,8,1001,6,2))
//方法一
val res = data.map(x => (“key”, x)).groupByKey().map(x => {
var min = Integer.MAX_VALUE
var max = Integer.MIN_VALUE
for(num <- x._2){ if(num>max){
max = num
}
if(num
{ println(“max\t”+x._1)
println(“min\t”+x._2)
})
//方法二,下面用一个比较鸡贼的方式求最大最小值
val max = data.reduce((a,b) => Math.max(a,b))
val min = data.reduce((a,b) => Math.min(a,b))
println(“max : ” + max)
println(“min : ” + min)
sc.stop
}
预期结果:
max: 1001
min: 2
思路和hadoop中的mr类似,设定一个key,value为需要求最大与最小值的集合,然后再groupBykey聚合在一起处理。第二个方法就更简单,性能也更好。
平均值问题
求每个key对应的平均值是常见的案例,在spark中处理类似问题常常会用到combineByKey这个函数,详细介绍请google一下用法,下面看代码:
@Test
def testAvg(): Unit ={
val sconf = new SparkConf().setAppName(“test”)
val sc = new SparkContext(sconf)
//初始化测试数据
val foo = sc.parallelize(List(Tuple2(“a”, 1), Tuple2(“a”, 3), Tuple2(“b”, 2), Tuple2(“b”, 8)));
//这里需要用到combineByKey这个函数,需要了解的请google
val results=foo.combineByKey(
(v)=>(v,1),
(acc:(Int,Int),v) =>(acc._1+v,acc._2+1),
(acc1:(Int,Int),acc2:(Int,Int))=>(acc1._1+acc2._1,acc1._2+acc2._2)
).map{case(key,value)=>(key,value._1/value._2.toDouble)}
results.collect().foreach(println)
}
我们让每个partiton先求出单个partition内各个key对应的所有整数的和 sum以及个数 count,然后返回一个pair(sum, count)在shuffle后累加各个key对应的所有sum和count,再相除得到均值.
TopN问题
Top n问题同样也是hadoop种体现mr思想的经典案例,那么在spark中如何方便快捷的解决呢:
@Test
def testTopN(): Unit ={
val sconf = new SparkConf().setAppName(“test”)
val sc = new SparkContext(sconf)
//初始话测试数据
val foo = sc.parallelize(Array(
(“a”, 1),
(“a”, 2),
(“a”, 3),
(“b”, 3),
(“b”, 1),
(“a”, 4),
(“b”, 4),
(“b”, 2)
))
//这里测试,取top 2。
val groupsSort=foo.groupByKey().map(tu=>{
val key=tu._1
val values=tu._2
val sortValues=values.toList.sortWith(_>_).take(2)
(key,sortValues)
})
//转换格式进行print
val flattenedTopNPerGroup =
groupsSort.flatMap({case (key, numbers) => numbers.map(key -> _)})
flattenedTopNPerGroup.foreach((value: Any) => {
println(value)
})
sc.stop
}
思路很简单,把数据groupBykey以后按key形成分组然后取每个分组最大的2个。预期结果:
(a,4)
(a,3)
(b,4)
(b,3)
以上简单介绍了一下hadoop中常见的3个案例在spark中的实现。如果读者们已经接触过或者写过一些hadoop的mapreduce job,那么会不会觉得在spark中写起来方便快捷很多呢。
更多spark经典案例介绍期待下回分解。。。
作者信息
力谱宿云LeapCloud旗下MaxLeap团队_数据分析组 成员:谭杨【原创】
MaxLeap技术博客首发:https://blog.maxleap.cn/archives/1239
微信公众号:MaxLeap_yidongyanfa
作者往期佳作
转载自演道,想查看更及时的互联网产品技术热点文章请点击http://go2live.cn