Java 并发编程(三):MESI、内存屏障
如何去解决 MESI
带来的 CPU
性能问题呢?这时候 store-buffer
就出场了。 store-buffer
是处于 CPU
核中的另一个缓存,当存在修改时,把修改直接放到 store-buffer
中, store-buffer
后台异步方式发送 invalidate
通知到其它 CPU
以及处理 ack
确认等工作,这样 CPU
就可以不用傻傻等待了。

还以刚才场景为例, CPU0
修改 cache line
后,直接丢给 store-buffer
,让 store-buffer
处理后续和其它 CPU
同步问题,自己可以接着干下面工作, store-buffer
采用异步方式发送 invalidate
通知和处理 ack
,这样 CPU0
就不会存在长时间阻塞问题,提示了 CPU
性能。
内存屏障
store-buffer
的引入虽然提升了 CPU
的性能,但是却引入了一个很大问题:数据不一致。 CPU0
中的 cache line
被修改后直接丢给 store-buffer
, store-buffer
是异步处理方式,这时 CPU0
继续处理后续工作,其它 CPU
的 cache line
由于还没有来得及通知可能还是旧数据,这就出现数据不一致问题。
比如下面代码可能存在这样一种场景:
-
CPU0 cpu0() value 10 value S CPU1
-
CPU0 value store-buffer isFinish = true isFinish CPU0 E M
-
CPU1 while(!isFinish) CPU1 isFinish CPU0 CPU0 isFinish CPU1 isFinish true assert value == 10 CPU0 value 10 CPU0 store-buffer CPU1 value 3
上面分析场景来看: 明明 cpu0()
方法中先执行 value=10
赋值,再去执行的 isFinish=true
赋值,但是在 cpu1()
方法中读取到了 isFinish
最新值, value
却读到的是旧值。 给人一种指令重排假象,这种就是伪指令重排,表面上像是发生了指令重排,实质上并没有进行指令重排,而是由于 CPU
缓存不一致造成的。
那怎么去解决这个问题呢?这里就引入了内存屏障。
在 cpu0()
方法中两个语句中间插入一个内存屏障指令 smp_mb
(伪代码),该指令作用就是保住 CPU0
的 store-buffer
中任务都同步完成后才能执行后续操作,也就保证 CPU0
上发生的修改对其它 CPU
都是可见的,然后再去执行后面语句。所以,这样就保证了 CPU1
中读取到 isFinish
最新值时, value
也一定是最新值,从而解决了上面所说的问题。
invalidate-queues
内存屏障就是把 store-buffer
由异步执行变成同步执行的过程, store-buffer
进行同步是个相当耗时的过程,需要发送 invalidate
通知到所有关联的 CPU
上,然后 CPU
接收到通知进行处理,处理完成后反馈 ack
,等获取到所有 CPU
反馈回来的 ack
才能继续向下执行。为了对内存屏障进行优化,又引入了 invalidate queues
(失效队列)概念。
如上图, store-buffer
将 invalidate
通知发送到其它 cpu
,其它 cpu
接收到 invalidate
通知后放入到 invalidate queues
后直接反馈 ack
,因为处理 invalidate
也是比较耗时的工作,通过 invalidate queues
引入,缩短了 store-buffer
同步的时间。
读屏障、写屏障、全屏障
还是刚才那个场景,引入 invalidate queues
后,需要在 cpu0()
和 cpu1()
两个方法中都插入一条内存屏障才能实现之前效果。
CPU0
其实只需要把 store-buffer
同步出去即可,保证在 cpu0()
方法中的修改及时对其它 CPU
可见,插入内存屏障导致 CPU0
同时也会把 invalidate queues
处理掉,这是没有必要的一步;另一点, CPU1
为了实现数据可见性,只需要把 invalidate queues
处理完就可以获取到 value
最新值,执行 assert value == 10
判断就没有问题了,插入内存屏障导致 store-buffer
中任务被处理同样是没必要的一步。
所以,对内存屏障进行优化,细分出三种类型:
-
写屏障:主要用来保证
store-buffer
中的任务都被处理完成,才能继续后续操作,避免因指令重排导致的后续的写操作提前到这个写操作之前; -
读屏障:主要用于保证
invalidate queues
中的任务都被处理完成,才能继续后续操作; -
全屏障:同时保证
store-buffer
和
invalidate queues
中的任务都被处理完成才能继续后续操作;
所以,对上述代码优化后就是如下情形,只需要在 cpu0
方法中插入写屏障, cpu1
方法中插入读屏障即可。