动态规划入门

重叠子问题

适合用动态规划方法求解的最优化问题应该具备的第二个性质是子问题空间必须足够“小”,即问题的递归算法会反复地求解相同的子问题,而不是一直生成新的子问题。

如果递归算法反复求解相关的子问题,则就称为最优化问题具有 重叠子问题(overlapping subproblems)
性质。
与之相对的,适合用分治算法求解的问题通常在递归的每一步都生成全新的子问题。
动态规划算法通常这样利用重叠子问题性质:对每个子问题求解一次,将解存入一个表中,当再次需要这个子问题时直接查表,每次查表的代价为常量时间。
一个问题是否适合用动态规划求解同事依赖于子问题的无关性和重叠性。两个子问题如果不共享资源,它们就是独立的。而重叠是指两个子问题实际上是同一个子问题,只是作为不同问题的子问题出现而已。
将自顶向下的递归算法(无备忘录)与自底向上的动态规划算法进行比较,后者要高效得多,因为它利用了重叠子问题性质。